Natural dissolved organic matter (DOM) can serve as an additional substrate for organic micropollutant (OMP) degrading bacteria, thus influencing OMP biodegradation in aquatic systems. DOM biodegradation depends on the OMP degrader's ability to grow on different DOM constituents, and on its capability to compete for DOM constituents against the rest of the resident aquatic microbial community. This study aimed to investigate the growth of a model OMP degrader strain, sp. KN65.2 (assumed specialist), isolated for its ability to mineralize carbofuran, on thirteen DOM constituents; compare its metabolic capabilities to those of a common freshwater strain ( sp. P17) (generalist); and to evaluate competition for specific compounds. Growth experiments were carried out in pure- and mixed culture batch experiments. The DOM constituents tested included aromatic amino acids and a range of phenolic acids (lignin derivatives). The OMP degrader could biodegrade approximately half of the tested compounds. It showed a high specialization for substrates containing a hydroxyl-group in the -position of the primary aromatic ring substituent. However, its broad substrate range enabled the strain to grow on the same number of auxiliary substrates as the generalist. Moreover, the OMP degrader was able to successfully compete against the generalist for the biodegradation of one (4-hydroxybenzaldehyde) out of three substrates (4-hydroxybenzoic acid, 4-hydroxybenzaldehyde, L-tyrosine), which were biodegraded by both strains. The study results provide insight on the substrate specificity of a model OMP degrader, which can inform development of modeling frameworks investigating the influence of DOM on OMP biodegradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2em00197g | DOI Listing |
Talanta
January 2025
DCU Water Institute, School of Chemical Sciences, Dublin City University, Ireland. Electronic address:
Anthropogenic activities have led to increased stress on our marine and other aquatic environments. There is a pressing need to monitor, measure, understand and mitigate causes of these pressures. This paper presents a novel optical head for monitoring and measuring marine based optical phenomena.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environmental Science and Engineering, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.
In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by OH/O using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation.
View Article and Find Full Text PDFWater Res
January 2025
Department of Civil and Environmental Engineering, North Carolina State University, Raleigh, 915 Partners Way, Raleigh, NC, 27695-7901, USA. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) are widespread contaminants with adverse environmental and public health effects. Anion exchange (IX) processes can effectively remove many PFAS from water. Objectives of this research were to (1) quantify the effects of PFAS structure and background water matrix constituents [dissolved organic matter (DOM) and major inorganic anions (bicarbonate, chloride, sulfate, and nitrate)] on PFAS uptake capacity of IX resins (K), and (2) develop models that predict PFAS breakthrough in packed bed IX columns from PFAS structure and background water matrix characteristics.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada.
Marine dissolved organic matter (DOM) is an important, actively cycling carbon reservoir (662 GtC). However, the chemical structure and cycling of DOM within rapidly warming, polar environments remains largely unconstrained. Previous studies have shown rapid surface cycling of carbohydrates as biologically-labile DOM (LDOM).
View Article and Find Full Text PDFJ Environ Sci (China)
February 2025
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Sedimentation sludge water (SSW), a prominent constituent of wastewater from drinking water treatment plants, has received limited attention in terms of its treatment and utilization likely due to the perceived difficulties associated with managing SSW sludge. This study comprehensively evaluated the water quality of SSW by comparing it to a well-documented wastewater (filter backwash water (FBW)). Furthermore, it investigated the pollutant variations in the SSW during pre-sedimentation process, probed the underlying reaction mechanism, and explored the feasibility of employing a pilot-scale coagulation-sedimentation process for SSW treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!