We have been studying the thermionic emission of negatively charged molecules and small clusters for more than a decade. The kinetic energy released distribution (KERD) of mass-selected negative ions has been measured with a velocity map imaging spectrometer. A comparison of the experimental KERD to detailed balance models provided information on the reverse process, namely, the electron attachment to the parent. The electron attachment to neutral systems (reverse process of the electron emission from anions) is usually described in a simplified way as a single electron capture in the framework of the classical Langevin model. Our measurements show that this approach is insufficient and that, in addition to the capture step, an intramolecular vibrational redistribution (IVR) step should be included. As far as multiply charged anions are concerned, the electron attachment to anions (reverse process of the electron emission from dianions) is strongly affected by the repulsive Coulomb barrier (RCB). Previous studies assumed a pure over-the-barrier process, which is in disagreement with our study. Indeed, electron emission is measured below the RCB, revealing significant thermal tunneling. In the present review, we summarize these works on singly and doubly charged anions in an attempt to present a unified view of the involved processes. It is worth noting that the detailed measurements of KERDs in the very low kinetic energy region (typically around 0.1 eV) have been made possible thanks to electron imaging methods, without which all of this work could never have been done, with time-resolution capabilities allowing the disentangling of direct and delayed electron emission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c04530 | DOI Listing |
ACS Appl Bio Mater
January 2025
Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Division of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University (JBNU), Jeonju 54896, South Korea.
Ever-increasing demand for efficient optoelectronic devices with a small-footprinted on-chip light emitting diode has driven their expansion in self-emissive displays, from micro-electronic displays to large video walls. InGaN nanowires, with features like high electron mobility, tunable emission wavelengths, durability under high current densities, compact size, self-emission, long lifespan, low-power consumption, fast response, and impressive brightness, are emerging as the choice of micro-light emitting diodes (µLEDs). However, challenges persist in achieving high crystal quality and lattice-matching heterostructures due to composition tuning and bandgap issues on substrates with differing crystal structures and high lattice mismatches.
View Article and Find Full Text PDFCureus
December 2024
Department of Dental Sciences, Faculty of Medicine, University of Liege, Liege, BEL.
Background Fracture of nickel-titanium (Ni-Ti) instruments in root canals is commonly associated with compromised outcomes in endodontic treatment. There is no single, universally accepted approach for managing this complication. The objective of this study is to evaluate the effectiveness of an Nd: YAP laser-assisted protocol in removing fractured Ni-Ti files in teeth with minimal root curvature (less than 15 degrees).
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
Luminescent gold(I) compounds have attracted intensive attention due to anticipated strong spin-orbit coupling (SOC) resulting from heavy atom effect of gold atoms. However, some mononuclear gold(I) compounds are barely satisfactory. Here, we unveil that low participation of gold in transition-related orbitals, caused by 6s-π symmetry mismatch, is the cause of low SOCs in monogold(I) compounds.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical, Metallurgical and Materials Engineering (Polymer Division), Institute of NanoEngineering Research (INER), Tshwane University of Technology, Pretoria, South Africa.
This work investigates the adhesive property of Soy Protein Isolate(SPI)polymer solution by studying mechanical properties of composites formed using waste wood granules and SPI solutions. To improve the adhesive strength of SPI solution, Carboxymethyl Cellulose Sodium(NaCMC)was mixed (in the weight ratios of 9:1 and 8:2) due to its strong gel formation capabilities. The adhesive performance of these composites was further investigated in the presence and absence of non-toxic additives, including sorbitol (SOR) and stearic acid (SA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!