Dynamic three-dimensional (3D) surface imaging by phase-shifting fringe projection profilometry has been widely implemented in diverse applications. However, existing techniques fall short in simultaneously providing the robustness in solving spatially isolated 3D objects, the tolerance of large variation in surface reflectance, and the flexibility of tunable working distances with meter-square-level fields of view (FOVs) at video rate. In this work, we overcome these limitations by developing multi-scale band-limited illumination profilometry (MS-BLIP). Supported by the synergy of dual-level intensity projection, multi-frequency fringe projection, and an iterative method for distortion compensation, MS-BLIP can accurately discern spatially separated 3D objects with highly varying reflectance. MS-BLIP is demonstrated by dynamic 3D imaging of a translating engineered box and a rotating vase. With an FOV of up to 1.7 m × 1.1 m and a working distance of up to 2.8 m, MS-BLIP is applied to capturing full human-body movements at video rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.457502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!