Chip-scale optical devices operated at wavelengths shorter than communication wavelengths, such as LiDAR for autonomous driving, bio-sensing, and quantum computation, have been developed in the field of photonics. In data processing involving optical devices, modulators are indispensable for the conversion of electronic signals into optical signals. However, existing modulators have a high half-wave voltage-length product (VπL) which is not sufficient at wavelengths below 1000 nm. Herein, we developed a significantly efficient optical modulator which has low VL of 0.52 V·cm at λ = 640 nm using an electro-optic (EO) polymer, with a high glass transition temperature (Tg = 164 °C) and low optical absorption loss (2.6 dB/cm) at λ = 640 nm. This modulator is not only more efficient than any EO-polymer modulator reported thus far, but can also enable ultra-high-speed data communication and light manipulation for optical platforms operating in the ranges of visible and below 1000 nm infrared.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.456271DOI Listing

Publication Analysis

Top Keywords

electro-optic polymer
8
optical devices
8
optical
6
superiorly low
4
low half-wave
4
half-wave voltage
4
voltage electro-optic
4
modulator
4
polymer modulator
4
modulator visible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!