In this paper, we observe the distinguishable modulation of the different eigenmodes by lattice mode in terahertz U-shaped metasurfaces, and a remarkable lattice induced suppression of the high order eigenmode resonance is demonstrated. With the quantitative analysis of Q factor and loss of the resonances, we clarify that the peculiar phenomenon of suppression is originated from the phase mismatch of the metasurfaces via introducing the phase difference between the neighboring structures. These results provide new insights into the phase mismatch mediated transmission amplitude of eigenmode resonance in metasurfaces and open a new path to developing terahertz multifunctional devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.452001 | DOI Listing |
Lancet
January 2025
Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy.
Background: CheckMate 8HW prespecified dual primary endpoints, assessed in patients with centrally confirmed microsatellite instability-high or mismatch repair-deficient status: progression-free survival with nivolumab plus ipilimumab compared with chemotherapy as first-line therapy and progression-free survival with nivolumab plus ipilimumab compared with nivolumab alone, regardless of previous systemic treatment for metastatic disease. In our previous report, nivolumab plus ipilimumab showed superior progression-free survival versus chemotherapy in first-line microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer in the CheckMate 8HW trial. Here, we report results from the prespecified interim analysis for the other primary endpoint of progression-free survival for nivolumab plus ipilimumab versus nivolumab across all treatment lines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080.
The highest sheet symmetry form of graphyne, with one triple bond between each neighboring hexagon in graphene, irreversibly transforms exothermically at ambient pressure and low temperatures into a nongraphitic, planar-sheet, zero-bandgap phase consisting of intrasheet-bonded sp carbons. The synthesis of this sp carbon phase is demonstrated, and other carbon phases are described for possible future synthesis from graphyne without breaking graphyne bonds. While measurements and theory indicate that the reacting graphyne becomes nonplanar because of sheet wrinkling produced by dimensional mismatch between reacted and nonreacted sheet regions, sheet planarity is regained when the reaction is complete.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.
Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States.
Lipid membranes form the primary structure of cell membranes and serve as configurable interfaces across numerous applications including biosensing technologies, antifungal treatments, and therapeutic platforms. Therefore, the modification of lipid membranes by additives has important consequences in both biological processes and practical applications. In this study, we investigated a nicotinic-acid-based gemini surfactant (NAGS) as a chemically tunable molecular additive for modulating the structure and phase behavior of liposomal membranes.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Dental Medicine and Nursing, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania.
Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!