We report on a quasi-continuous Er:YAG planar waveguide laser operated at 2.94 µm based on the major oscillator power amplification configuration. With the total pump peak power of 32.01 kW, a maximum output peak power of 1.14 kW was obtained at the seed injection peak power of 184.4 W operated at 400µs, 40 Hz. Furthermore, the numerical simulation results indicate that better performance of the laser could be obtained with the higher injected seed laser power. To the best of our knowledge, this is the first experimental demonstration of 2.94 µm planar waveguide laser with an Er doped host material.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.457562DOI Listing

Publication Analysis

Top Keywords

peak power
16
planar waveguide
12
eryag planar
8
waveguide laser
8
294 µm
8
power
6
laser
5
114 kw peak
4
power mid-infrared
4
mid-infrared eryag
4

Similar Publications

Optimizing demand response and load balancing in smart EV charging networks using AI integrated blockchain framework.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.

The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.

View Article and Find Full Text PDF

All-polymer piezo-ionic-electric electronics.

Nat Commun

December 2024

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Piezoelectric electronics possess great potential in flexible sensing and energy harvesting applications. However, they suffer from low electromechanical performance in all-organic piezoelectric systems due to the disordered and weakly-polarized interfaces. Here, we demonstrated an all-polymer piezo-ionic-electric electronics with PVDF/Nafion/PVDF (polyvinylidene difluoride) sandwich structure and regularized ion-electron interfaces.

View Article and Find Full Text PDF

Laser scribed proton exchange membranes for enhanced fuel cell performance and stability.

Nat Commun

December 2024

Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.

View Article and Find Full Text PDF

Global seasonal influenza circulation involves a complex interplay between local (seasonality, demography, host immunity) and global factors (international mobility) shaping recurrent epidemic patterns. No studies so far have reconciled the two spatial levels, evaluating the coupling between national epidemics, considering heterogeneous coverage of epidemiological, and virological data, integrating different data sources. We propose a novel-combined approach based on a dynamical model of global influenza spread (GLEAM), integrating high-resolution demographic, and mobility data, and a generalized linear model of phylogeographic diffusion that accounts for time-varying migration rates.

View Article and Find Full Text PDF

The effects of wheat bran dietary fiber (WBDF) treated by air flow micro-pulverization on gelatinization, thermal, rheological, structural properties, and in vitro digestion of wheat starch (WS) were investigated. Different particle sizes of WBDF were obtained by conventional knife grinding and airflow micro-grinding. Compared with conventional knife grinding, the particle size of WBDF treated by air flow micro-pulverization decreased, the particle size distribution was concentrated at small particle sizes, the specific surface area increased, and the hydraulic and oil-holding power decreased, which was mainly related to the change of WBDF spatial structure and the increase of solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!