Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have performed experimental and numerical studies enabling clear insight into the physical mechanisms underlying the super-mode noise mitigation in harmonically mode-locked (HML) fiber lasers using the resonant continuous wave (CW) injection. New experiments have refined the requirements to the positions inside the laser spectrum assigned to the injected CW component, a Kelly sideband, and the transparency peaks of the birefringent fiber filter. In particular, we have proved experimentally that the noise mitigation effect is dominating with the CW injected to the long-wavelength side of laser spectrum. Injection to the opposite side destroys the HML operation regime. Our numerical simulations confirm these specific features. To get the result, we have simulated phase-locking between the CW and a single soliton. Then, the developed model has been applied to the laser cavity operating multiple pulses in the presence of the gain depletion and recovery mechanism responsible for harmonic pulse arrangement. We clearly demonstrate how the CW injection accelerates or slows down the HML process enabling the generation of additional inter-pulse forces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.457023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!