Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Low-loss optical waveguides are highly desired for nonlinear photonics such as four-wave mixing (FWM), optical parametric amplification, and pulse shaping. In this work, low-loss silicon photonic spiral waveguides beyond the single-mode regime are proposed and demonstrated for realizing an enhanced FWM process. In particular, the designed 2-µm-wide silicon photonic waveguides are fabricated with standard foundry processes and have a propagation loss as low as ∼0.28 dB/cm due to the reduced light-matter interaction at the waveguide sidewalls. In the experiments, strong FWM effect is achieved with a high conversion efficiency of -8.52 dB in a 2-µm-wide and 20-cm-long silicon photonic waveguide spiral, and eight new wavelengths are generated with the pump power of ∼80 mW (corresponding to a low power density of ∼195 mW/µm). In contrast, the FWM efficiency for the 0.45-µm-wide waveguide spiral is around -15.4 dB, which is much lower than that for the 2-µm-wide waveguide spiral. It can be seen that silicon photonics beyond the singlemode regime opens a new avenue for on-chip nonlinear photonics and will bring new opportunities for nonlinear photonic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.456704 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!