To satisfy global energy demands and decrease the level of atmospheric greenhouse gases, alternative clean energy sources are required. Hydrogen is one of the most promising clean energy sources due to its high chemical energy density and near-zero greenhouse gas emissions. A single alloyed phase of Pd/Pt nanoclusters as quantum dots (QDs) was prepared and loaded over CoO nanoparticles with a low loading percentage (1 wt.%) for hydrogen generation from the hydrolysis of NaBH at room temperature. L-glutathione (SG) was used as a capping ligand. It was found that the single alloy catalyst (Pd-Pt)(SG)/CoO caused a significant enhancement in hydrogen generation in comparison to the monometallic clusters (Pd(SG) and Pt(SG)). Moreover, the Pd/Pt alloy showed a positive synergistic effect compared to the physical mixture of Pd and Pt clusters (1:1) over CoO. The QDs alloy and monometallic Pd and Pt clusters exhibited well-dispersed particle size in ~ 1 nm. The (Pd-Pt)(SG))/CoO catalyst offers a high hydrogen generation rate (HGR) of 8333 mL min g at room temperature. The synergistic effect of Pd and Pt atoms in the nanoclusters alloy is the key point beyond this high activity, plus the prepared clusters' unique atomic packing structure and electronic properties. The effect of the NaBH concentration, catalyst amount, and reaction temperature (25-60 °C) were investigated, where HGR reaches 50 L min g at 60 °C under the same reaction conditions. The prepared catalysts were analyzed by UV-Vis, TGA, HR-TEM, XRD, and N adsorption/desorption techniques. The charge state of the Pd and Pt in monometallic and alloy nanoclusters is zero, as confirmed by X-ray photoelectron spectroscopy analysis. The catalysts showed high recyclability efficiency for at least five cycles due to the high leaching resistance of the alloy nanoclusters within the CoO host. The prepared catalysts are highly efficient for energy-based applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553983 | PMC |
http://dx.doi.org/10.1038/s41598-022-21064-z | DOI Listing |
Mol Immunol
January 2025
Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Master Program of Pharmaceutical Manufacture, College of Pharmacy, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan. Electronic address:
The immunoglobulin E (IgE) receptor FcεRI (Fc epsilon RI) plays a crucial role in allergic reactions. Recent studies have indicated that the interaction between FcεRIβ and the downstream protein phospholipase C beta 3 (PLCβ3) leads to the production of inflammatory cytokines. The aim of this study was to develop small molecules that inhibit the protein-protein interactions between FcεRIβ and PLCβ3 to treat allergic inflammation.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055 China. Electronic address:
In the typical ionothermal synthesis of crystalline carbon nitride (CCN), alkali metal halides are usually used in large amounts. Here, we report a new method for synthesizing poly (heptazine imide) (PHI) using only a trace amount of NaF, which is 20 times less than the amount of NaCl typically required to achieve the PHI structure. Different from the prevailing view that salts function primarily as templates and chelating agents during polymerization, our research revealed the unique role that NaF plays in the polymerization of PHI.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Bari: Universita degli Studi di Bari Aldo Moro, Dept. of Pharmacy - Drug Sciences, via E. Orabona 4, 70125, Bari, ITALY.
Strained spiro-heterocycles (SSH) have gained significant attention within the medicinal chemistry community as promising (sp3)-rich bioisosteres for their aromatic and non-spirocyclic counterparts. We herein report access to an unprecedented spiro-heterocycle - 1,5-dioxaspiro[2.3]hexane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!