Plasmonic high-entropy carbides.

Nat Commun

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Published: October 2022

Discovering multifunctional materials with tunable plasmonic properties, capable of surviving harsh environments is critical for advanced optical and telecommunication applications. We chose high-entropy transition-metal carbides because of their exceptional thermal, chemical stability, and mechanical properties. By integrating computational thermodynamic disorder modeling and time-dependent density functional theory characterization, we discovered a crossover energy in the infrared and visible range, corresponding to a metal-to-dielectric transition, exploitable for plasmonics. It was also found that the optical response of high-entropy carbides can be largely tuned from the near-IR to visible when changing the transition metal components and their concentration. By monitoring the electronic structures, we suggest rules for optimizing optical properties and designing tailored high-entropy ceramics. Experiments performed on the archetype carbide HfTaC yielded plasmonic properties from room temperature to 1500K. Here we propose plasmonic transition-metal high-entropy carbides as a class of multifunctional materials. Their combination of plasmonic activity, high-hardness, and extraordinary thermal stability will result in yet unexplored applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553889PMC
http://dx.doi.org/10.1038/s41467-022-33497-1DOI Listing

Publication Analysis

Top Keywords

high-entropy carbides
12
multifunctional materials
8
plasmonic properties
8
plasmonic
5
plasmonic high-entropy
4
carbides
4
carbides discovering
4
discovering multifunctional
4
materials tunable
4
tunable plasmonic
4

Similar Publications

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.

View Article and Find Full Text PDF

Transition metal carbides, nitrides, and carbonitrides (MXenes) have emerged as a promising class of 2D materials that can be used for various applications. Recently, a new form of high-entropy MXenes has been reported, which contains an increased number of elemental species that can increase the configurational entropy and reduce the Gibbs free energy. The unique structure and composition lead to a range of intriguing and tunable characteristics.

View Article and Find Full Text PDF

MXene, a notable two-dimensional transition metal carbide, has attracted increasing attention in materials science due to its unique attributes, driving innovations in energy storage, sensors, catalysts, and electromagnetic shielding. The property and application performance are determined by the electronic structure, which can be described based on the density of states (DOS). The conventional density functional theory (DFT) calculation is able to provide the DOS spectrum of a specific atomic structure.

View Article and Find Full Text PDF

Five carbide powders, TiC, CrC, ZrC, NbC and SiC, were selected as raw materials and mixed by dry or wet milling. Then (TiCrZrNb)C-SiC multiphase ceramics were successfully prepared by spark plasma sintering (SPS) at 1900 °C, using D-HECs-1900 (dry milling method) and W-HECs-1900 (wet milling method), respectively. In this study, the effects of the ball milling method on the microstructure and mechanical properties of the multiphase high-entropy ceramics were systematically investigated.

View Article and Find Full Text PDF

Advancements in high-entropy materials for electromagnetic wave absorption.

Mater Horiz

December 2024

William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.

Widespread electromagnetic (EM) interference and pollution have become major issues due to the rapid advancement of fifth-generation (5G) wireless communication technology and devices. Recent advances in high-entropy (HE) materials have opened new opportunities for exploring EM wave absorption abilities to address the issues. The lattice distortion effect of structures, the synergistic effect of multi-element components, and multiple dielectric/magnetic loss mechanisms can offer extensive possibilities for optimizing the balance between impedance matching and attenuation ability, resulting in superior EM wave absorption performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!