Backgrounds: SARS-CoV-2 infection results in a broad spectrum of clinical outcomes, ranging from asymptomatic to severe symptoms and death. Most COVID-19 pathogenesis is associated with hyperinflammatory conditions driven primarily by myeloid cell lineages. The long-term effects of SARS-CoV-2 infection post recovery include various symptoms.
Methods: We performed a longitudinal study of the innate immune profiles 1 and 3 months after recovery in the Thai cohort by comparing patients with mild, moderate, and severe clinical symptoms using peripheral blood mononuclear cells (n = 62).
Results: Significant increases in the frequencies of monocytes compared to controls and NK cells compared to mild and moderate patients were observed in severe patients 1-3 months post recovery. Increased polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were observed in all recovered patients, even after 3 months. Increased IL-6 and TNFα levels in monocytes were observed 1 month after recovery in response to lipopolysaccharide (LPS) stimulation, while decreased CD86 and HLA-DR levels were observed regardless of stimulation. A multiplex analysis of serum cytokines performed at 1 month revealed that most innate cytokines, except for TNFα, IL4/IL-13 (Th2) and IFNγ (Th1), were elevated in recovered patients in a severity-dependent manner. Finally, the myelopoiesis cytokines G-CSF and GM-CSF were higher in all patient groups. Increased monocytes and IL-6- and TNFα-producing cells were significantly associated with long COVID-19 symptoms.
Conclusions: These results reveal that COVID-19 infection influences the frequencies and functions of innate immune cells for up to 3 months after recovery, which may potentially lead to some of the long COVID symptoms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519362 | PMC |
http://dx.doi.org/10.1016/j.jmii.2022.09.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!