Coral physiology: Going with the ciliary flow.

Curr Biol

Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA; Department of Physics, College of Arts and Sciences, University of Miami, Coral Gables, FL, USA; Department of Biology, College of Arts and Sciences, University of Miami, Coral Gables, FL, USA. Electronic address:

Published: October 2022

Corals have long been known to generate local fluid flows using ciliary beating, but the importance of these ciliary flows is just being discovered. Two new papers shed light on how ciliary-flow physics plays a key role in shaping coral physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2022.08.049DOI Listing

Publication Analysis

Top Keywords

coral physiology
8
physiology going
4
going ciliary
4
ciliary flow
4
flow corals
4
corals long
4
long generate
4
generate local
4
local fluid
4
fluid flows
4

Similar Publications

Not all corals are attached to the substrate; some taxa are solitary and free-living, allowing them to migrate into preferred habitats. However, the lifestyle of these mobile corals, including how they move and navigate for migration, remains largely obscure. This study investigates the specific biomechanics of Cycloseris cyclolites, a free-living coral species, during phototactic behaviour in response to blue and white light stimuli.

View Article and Find Full Text PDF

Marine heatwaves are increasing in intensity and frequency however, responses and survival of reef corals vary geographically. Geographical differences in thermal tolerance may be in part a consequence of intraspecific diversity, where high-diversity localities are more likely to support heat-tolerant alleles that promote survival through thermal stress. Here, we assessed geographical patterns of intraspecific genetic diversity in the ubiquitous coral Pocillopora damicornis species complex using 428 sequences of the Internal Transcribed Spacer 2 (ITS2) region across 44 sites in the Pacific and Indian Oceans.

View Article and Find Full Text PDF

The KinaTrax markerless motion capture system, used extensively in the analysis of baseball pitching and hitting, is currently being adapted for use in clinical biomechanics. In clinical and laboratory environments, repeatability is inherent to the quality of any diagnostic tool. The KinaTrax system was assessed on within- and between-session reliability for gait kinematic and spatiotemporal parameters in healthy adults.

View Article and Find Full Text PDF

Symbiotic cnidarians, such as sea anemones and corals, rely on their mutualistic microalgal partners (Symbiodiniaceae) for survival. Marine heatwaves can disrupt this partnership, and it has been proposed that introducing experimentally evolved, heat-tolerant algal symbionts could enhance host thermotolerance. To test this hypothesis, the sea anemone Exaiptasia diaphana (a coral model) was inoculated with either the heterologous wild type or heat-evolved algal symbiont, Cladocopium proliferum, and homologous wild-type Breviolum minutum.

View Article and Find Full Text PDF

Coral reefs experience numerous environmental gradients affecting organismal physiology and species biodiversity, which ultimately impact community metabolism. This study shows that submarine groundwater discharge (SGD), a common natural environmental gradient in coastal ecosystems associated with decreasing temperatures, salinity and pH with increasing nutrients, has both direct and indirect effects on coral reef community metabolism by altering individual growth rates and community composition. Our data revealed that SGD exposure hindered the growth of two algae, and by 67 and 200%, respectively, and one coral, by 20%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!