Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Aims: Understanding how genetic diversity is distributed and maintained within species is a central tenet of evolutionary and conservation biology, yet is understudied in arid regions of the globe. In temperate, glaciated environments, high genetic diversity in plant species is frequently found in refugial areas, which are often associated with southern non-glaciated landscapes. In arid, unglaciated environments, landscape features providing mesic conditions are likely to be refugia, although our understanding needs more refinement in these biomes. We test whether refugia and nuclear diversity hotspots occur in high-elevation, topographically complex areas for co-distributed shrubs (Petalostylis labicheoides and Indigofera monophylla; Fabaceae) in the ancient, arid Pilbara bioregion of north-western Australia.
Methods: We conducted extensive sampling of the Pilbara (>1400 individuals from 62 widespread populations) to detect patterns in nuclear diversity and structure based on 13-16 microsatellite loci. Evidence of historical refugia was investigated based on patterns of diversity in three non-coding chloroplast (cp) sequence regions for approx. 240 individuals per species. Haplotype relationships were defined with median-joining networks and maximum likelihood phylogenetic trees.
Key Results: We found cpDNA evidence for a high-elevation refugium in P. labicheoides but not for I. monophylla that instead exhibited extraordinary haplotype diversity and evidence for persistence across a widespread area. Nuclear diversity hotspots occurred in, but were not exclusive to, high-elevation locations and extended to adjacent, low-elevation riparian areas in both species.
Conclusions: Phylogeographic refugia in arid environments may occur in high-elevation areas for some species but not all, and may be influenced by species-specific traits: a mesic montane refugium in P. labicheoides could be related to its preference for growth in water-gaining areas, while a lack of such evidence in I. monophylla could be related to maintenance of cpDNA diversity in a large soil seed bank and dynamic evolutionary history. Mesic environments created by the intersection of topographically complex landscapes with riparian zones can be contemporary reservoirs of genetic diversity in arid landscapes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758307 | PMC |
http://dx.doi.org/10.1093/aob/mcac126 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!