AI Article Synopsis

  • Heavy metals are toxic and accumulate in fish from polluted water, posing health risks for humans who consume them.
  • The study highlights pollution sources in Nigeria's freshwater, identifying industrial activities as a major contributor to high levels of heavy metals like Zn, As, Cu, Fe, and Pb.
  • The findings emphasize the urgent need for better management of heavy metals in water to safeguard public health.

Article Abstract

Heavy metals (HMs) have attracted global attention due to their toxicity, persistence, and accumulation in aquatic fish in the polluted water environment. The consumption of these fishes exposed humans to a higher risk of non-carcinogenic and carcinogenic risks. In this study, we provided a critical overview of the potential sources and concentration of HMs in Nigeria's freshwater. Furthermore, we reported their pollution level in widely eaten fish species in the country. Our findings show that effluent from anthropogenic and industrial activities is one of the major sources HMs in the country. The mean concentration of Zn (9.02 mg/L), As (7.25 mg/L), Cu (4.35 mg/L), Fe (1.77 mg/L), and Pb (1.46 mg/L) in Nigeria's freshwaters were found to be high than Nigerian Standard for Drinking Water Quality permissible limit. This study demonstrated considerable health risks associated HMs via dietary consumption of different fishes from polluted waters. Therefore, we recommended an urgent need for effective management HMs in water bodies in order to protect the lives of people living in the country.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-23390-1DOI Listing

Publication Analysis

Top Keywords

heavy metals
8
nigeria's freshwater
8
consumption fishes
8
hms
5
mg/l
5
concentrations bioaccumulation
4
bioaccumulation health
4
health risk
4
risk assessments
4
assessments heavy
4

Similar Publications

Siderophore synthetase-receptor gene coevolution reveals habitat- and pathogen-specific bacterial iron interaction networks.

Sci Adv

January 2025

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members.

View Article and Find Full Text PDF

A nanoparticle-based wireless deep brain stimulation system that reverses Parkinson's disease.

Sci Adv

January 2025

New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.

Deep brain stimulation technology enables the neural modulation with precise spatial control but requires permanent implantation of conduits. Here, we describe a photothermal wireless deep brain stimulation nanosystem capable of eliminating α-synuclein aggregates and restoring degenerated dopamine neurons in the substantia nigra to treat Parkinson's disease. This nanosystem (ATB NPs) consists of gold nanoshell, an antibody against the heat-sensitive transient receptor potential vanilloid family member 1 (TRPV1), and β-synuclein (β-syn) peptides with a near infrared-responsive linker.

View Article and Find Full Text PDF

Molybdate uptake interplay with ROS tolerance modulates bacterial pathogenesis.

Sci Adv

January 2025

Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.

The rare metal element molybdenum functions as a cofactor in molybdoenzymes that are essential to life in almost all living things. Molybdate can be captured by the periplasmic substrate-binding protein ModA of ModABC transport system in bacteria. We demonstrate that ModA plays crucial roles in growth, multiple metabolic pathways, and ROS tolerance in .

View Article and Find Full Text PDF

Copper is an essential nutrient for sustaining vital cellular processes spanning respiration, metabolism, and proliferation. However, loss of copper homeostasis, particularly misregulation of loosely bound copper ions which are defined as the labile copper pool, occurs in major diseases such as cancer, where tumor growth and metastasis have a heightened requirement for this metal. To help decipher the role of copper in the etiology of cancer, we report a histochemical activity-based sensing approach that enables systematic, high-throughput profiling of labile copper status across many cell lines in parallel.

View Article and Find Full Text PDF

Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!