Objectives: To evaluate the potential of multi b-value DWI in predicting the prognosis of patients with locally advanced rectal cancer (LARC).
Methods: From 2015 to 2019, a total of 161 patients with LARC were enrolled and randomly sampled into a training set (n = 113) and validation set (n = 48). Multi b-value DWI (b = 0~1500 s/mm) scans were postprocessed to generate functional parameters, including apparent diffusion coefficient (ADC), Dt, Dp, f, distributed diffusion coefficient (DDC), and α. Histogram features of each functional parameter were submitted into Least absolute shrinkage and selection operator (LASSO) and stepwise multivariate COX analysis to generate DWI_score based on the training set. The prognostic model was constructed with functional parameter, DWI_score, and clinicopathologic factors by using univariate and multivariate COX analysis on the training set and verified on the validation set.
Results: Multivariate COX analysis revealed that DWI_score was an independent indicator for 5-year progression-free survival (PFS, HR = 5.573, p < 0.001), but not for overall survival (OS, HR = 2.177, p = 0.051). No mean value of functional parameters was correlated with PFS or OS. Prognostic model for 5-year PFS based on DWI_score, TNM-stage, mesorectal fascia (MRF), and extramural venous invasion (EMVI) showed good performance both in the training set (AUC = 0.819) and validation set (AUC = 0.815).
Conclusions: The DWI_score based on histogram features of multi b-value DWI functional parameters was an independent factor for PFS of LARC and the prognostic model with a combination of DWI_score and clinicopathologic factors could indicate the progression risk before treatment.
Key Points: • Mean value of functional parameters obtained from multi b-value DWI might not be useful to assess the prognosis of LARC. • The DWI_score based on histogram features of multi b-value DWI functional parameters was an independent prognosis factor for PFS of LARC. • Prognostic model based on DWI_score and clinicopathologic factors could indicate the progression risk of LARC before treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-022-09159-7 | DOI Listing |
Acad Radiol
January 2025
Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.). Electronic address:
Rationale And Objectives: To propose a novel MRI-based hyper-fused radiomic approach to predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer (BC).
Materials And Methods: Pretreatment dynamic contrast-enhanced (DCE) MRI and ultra-multi-b-value (UMB) diffusion-weighted imaging (DWI) data were acquired in BC patients who received NAT followed by surgery at two centers. Hyper-fused radiomic features (RFs) and conventional RFs were extracted from DCE-MRI or UMB-DWI.
J Med Signals Sens
December 2024
Department of Radiation Sciences, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
Sci Rep
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
This study aimed to establish and validate a multiparameter prediction model for Ki67 expression in hepatocellular carcinoma (HCC) patients while also exploring its potential to predict the one-year recurrence risk. The clinical, pathological, and imaging data of 83 patients with HCC confirmed by postoperative pathology were analyzed, and the patients were randomly divided into a training set (n = 58) and a validation set (n = 25) at a ratio of 7:3. All patients underwent a magnetic resonance imaging (MRI) scan that included multi-b value diffusion-weighted scanning before surgery, and quantitative parameters were obtained via intravoxel incoherent motion (IVIM) and diffusion kurtosis (DKI) models.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Bioengineering, University of California San Diego Jacobs School of Engineering, La Jolla, CA, USA.
The Restriction Spectrum Imaging restriction score (RSIrs) has been shown to improve the accuracy for diagnosis of clinically significant prostate cancer (csPCa) compared to standard DWI. Both diffusion and T properties of prostate tissue contribute to the signal measured in DWI, and studies have demonstrated that each may be valuable for distinguishing csPCa from benign tissue. The purpose of this retrospective study was to (1) determine whether prostate T varies across RSI compartments and in the presence of csPCa, and (2) evaluate whether csPCa detection with RSIrs is improved by acquiring multiple scans at different TEs to measure compartmental T (cT).
View Article and Find Full Text PDFEJNMMI Res
December 2024
Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
Background: To intraindividually compare the diagnostic performance of positron emission computed tomography (F-18-FDG-PET/CT) and diffusion-weighted magnetic resonance imaging (DW-MRI) in a non-inferiority design for the discrimination of peripheral nerve sheath tumours as benign (BPNST), atypical (ANF), or malignant (MPNST) in patients with neurofibromatosis type 1 (NF1).
Results: In this prospective single-centre study, thirty-four NF1 patients (18 male; 30 ± 11 years) underwent F-18-FDG-PET/CT and multi-b-value DW-MRI (11 b-values 0 - 800 s/mm²) at 3T. Sixty-six lesions corresponding to 39 BPNST, 11 ANF, and 16 MPNST were evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!