Ionic conductors such as polymer electrolytes and ionic liquids have high thermoelectric voltages several orders of magnitude higher than electronic thermoelectric materials, while their conductivity is much lower than the latter. This work reports a novel approach to achieve high-performance ionic conductors using calcium ion (Ca) coordinated bacterial cellulose (CaBC) through molecular channel engineering. Through the coordination of Ca with cellulose molecular chain, the distance between the cellulose molecular chains is widened, so that ions can transport along the cellulose molecular chain. Therefore, we reported ionic thermoelectric (i-TE) material based on CaBC/NaCl with a relatively high ionic Seebeck coefficient of -27.2 mV K and high ionic conductivity of 204.2 mS cm. This ionic hydrogel is promising in the design of high-thermopower i-TE materials for low-grade heat energy harvesting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c02558 | DOI Listing |
Phys Chem Chem Phys
January 2025
Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.
Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
Polymeric mixed ionic-electronic conductors (PMIECs) are gaining significant attention due to their potential applications in organic electrochemical transistors (OECTs). However, the performance of n-type OECTs still lags behind that of their p-type counterparts. Here, the structure-performance correlation of fused bithiophene imide dimer (BTI2)-based PMIECs is systematically investigated with the backbone evaluation from acceptor-strong donor (A-SD) to acceptor-donor (A-D), to acceptor-weak donor (A-WD), to acceptor-weak acceptor (A-WA), and finally to A-A structures.
View Article and Find Full Text PDFNano Lett
January 2025
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P.R. China.
Although aliovalent ion substitution is an important strategy for enhancing ionic conductivity in halide electrolytes, the choice of doping ions is often restricted to tetravalent ions, and investigations into the intrinsic origin of the doping mechanism are lacking. In this work, we investigated the effects of Zr, Ta and W doping on the crystal structure and ionic conductivity of yttrium-based rare-earth halides. Only Zr achieves fast ion diffusion in both the (001) and (002) crystal planes by affecting the volume of the octahedron and the tetrahedral interstitial space, whereas Ta significantly enhances the ion diffusion rate in the (001) crystal plane while suppressing it in the (002) plane, and W does the opposite.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
Highly ion-conductive solid electrolytes of nonlithium ions (sodium or potassium ions) are necessary for pursuing a more cost-effective and sustainable energy storage. Here, two classes of sulfonated -NH-linked covalent organic frameworks (COFs), specifically designed for sodium or potassium ion conduction (named i-COF-2 (Na or K) and i-COF-3 (Na or K)), were synthesized through a straightforward, one-step process using affordable starting materials. Remarkably, these COFs demonstrate high ionic conductivity at room temperature─3.
View Article and Find Full Text PDFSurface active ionic liquids (SAILs), offer potential advantages for pharmaceutical applications. Given the low permeability of gabapentin, an antiepileptic drug, in the gastrointestinal tract as classified by the Biopharmaceutics Classification Systems (BCS), understanding the micellization behavior of SAILs is essential for developing effective drug delivery systems to improve gabapentin bioavailability. This study explores the micellization and thermophysical behavior of SAILs (2-hydroxyethyl)ammonium laurate [2-HEA][Lau], bis(2-hydroxyethyl)ammonium laurate [BHEA][Lau], and tris(2-hydroxyethyl)ammonium laurate [THEA][Lau] in the presence of aqueous gabapentin solution at varied temperatures through COSMO analysis, electrical conductivity and surface tension measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!