Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multi-disease prediction is regarded as the capacity to simultaneously identify various diseases that are expected to be affected an individual at a certain period. These multiple diseases are seemed to be at various progression levels and need to be detected in the patient at the time of clinical visits. Diverse studies in the literature have included the predictive models for particular diseases yet, it is unable to notice humans with multiple diseases since humans are mostly suffered not only from a single disease but also from multiple diseases. Hence, this article aims to implement a novel multi-disease prediction model using an ensemble learning approach with deep features. The required data for the multi-disease prediction is collected from the standard datasets. Then, the collected data are given into the "Deep Belief Network (DBN)" approach, where the features are obtained from the RBM layers. These RBM features are tuned with the help of Deviation-based Hybrid Grasshopper Barnacles Mating Optimization (D-HGBMO) for improving the prediction performance. The optimized RBM features are considered in the ensemble learning model named Ensemble, in which the multi-disease prediction is performed with "Deep Neural Network (DNN), Extreme Learning Machine (ELM), and Long Short Term Memory." The predicted score from three classifiers is used in the optimized weighted score and thresholding-based final prediction using the same D-HGBMO for determining the accurate multi-disease prediction results. The experimental results show the effective performance of the proposed model by comparing it with the existing classifiers with the help of different quantitative measures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2022.2129969 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!