Lessons from early life: understanding development to expand stem cells and treat cancers.

Development

Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK.

Published: October 2022

Haematopoietic stem cell (HSC) self-renewal is a process that is essential for the development and homeostasis of the blood system. Self-renewal expansion divisions, which create two daughter HSCs from a single parent HSC, can be harnessed to create large numbers of HSCs for a wide range of cell and gene therapies, but the same process is also a driver of the abnormal expansion of HSCs in diseases such as cancer. Although HSCs are first produced during early embryonic development, the key stage and location where they undergo maximal expansion is in the foetal liver, making this tissue a rich source of data for deciphering the molecules driving HSC self-renewal. Another equally interesting stage occurs post-birth, several weeks after HSCs have migrated to the bone marrow, when HSCs undergo a developmental switch and adopt a more dormant state. Characterising these transition points during development is key, both for understanding the evolution of haematological malignancies and for developing methods to promote HSC expansion. In this Spotlight article, we provide an overview of some of the key insights that studying HSC development have brought to the fields of HSC expansion and translational medicine, many of which set the stage for the next big breakthroughs in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724165PMC
http://dx.doi.org/10.1242/dev.201070DOI Listing

Publication Analysis

Top Keywords

hsc self-renewal
8
development key
8
hsc expansion
8
hsc
6
hscs
6
development
5
expansion
5
lessons early
4
early life
4
life understanding
4

Similar Publications

Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is a type of head and neck cancer (HNC) with a high recurrence rate, which has been reported to be associated with the presence of cancer stem cells (CSCs). Tribbles pseudokinase 3 (TRIB3) is involved in intracellular signaling and the aim of the present study was to investigate the role of TRIB3 in the maintenance of CSCs. Analysis of The Cancer Genome Atlas database samples demonstrated a positive correlation between TRIB3 expression levels and shorter overall survival rates in patients with HNC.

View Article and Find Full Text PDF

Populations of very small embryonic-like stem cells (VSELs) (CD34+lin-CD45- and CD133+lin-CD45-), circulating in the peripheral blood of adults in small numbers, have been identified in several human tissues and together with the populations of hematopoietic stem cells (HSCs) (CD34+lin-CD45+) and CD133+lin-CD45+constitute a pool of cells with self-renewal and pluripotent stem cell characteristics. Using advanced cell staining and sorting strategies, we isolated populations of VSELs and HSCs for bulk RNA-Seq analysis to compare the transcriptomic profiles of both cell populations. Libraries were prepared from an extremely small number of cells; however, their good quality was preserved, and they met the criteria for sequencing.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) rely on self-renewal to sustain stem cell potential and undergo differentiation to generate mature blood cells. Mitochondrial fatty acid β-oxidation (FAO) is essential for HSC maintenance. However, the role of Carnitine palmitoyl transferase 1a (CPT1A), a key enzyme in FAO, remains unclear in HSCs.

View Article and Find Full Text PDF

The maintenance of cellular redox balance is crucial for cell survival and homeostasis and is disrupted with aging. Selenoproteins, comprising essential antioxidant enzymes, raise intriguing questions about their involvement in hematopoietic aging and potential reversibility. Motivated by our observation of mRNA downregulation of key antioxidant selenoproteins in aged human hematopoietic stem cells (HSCs) and previous findings of increased lipid peroxidation in aged hematopoiesis, we employed tRNASec gene (Trsp) knockout (KO) mouse model to simulate disrupted selenoprotein synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!