A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The unique photoelectronic properties of the two-dimensional Janus MoSSe/WSSe superlattice: a first-principles study. | LitMetric

Designing photocatalysts with suitable band alignment and considerable carrier mobility is extremely important. Here, by means of first-principles calculation, we systematically investigated the structural, photoelectronic, and carrier mobility behavior of the two-dimensional Janus MoSSe/WSSe superlattice. The results show that both armchair-type (A-SL) and zigzag-type (Z-SL) superlattices are relatively stable with negative values in the range of -2.35 to -1.16 eV. Band gap and band edge position calculations demonstrate that these superlattices are completely suitable for water splitting by visible light. Particularly, the interface contact of the superlattice can be spontaneously changed from type-I to type-II when > 4, facilitating separation of photogenerated carriers. Furthermore, the hole carrier mobility () in A-SL can be effectively regulated from 1200 to 2200 cm V s, much larger than that of the isolated components. Interestingly, the disparity of hole/electron carrier mobility is remarkably large with an approximately 20-fold difference, showing the potential in prohibiting the recombination of photogenerated carriers. This unique behavior is further illustrated by the relaxation times of carriers, where the lifetime of hole carriers is about 7 times larger than that of electron carriers. These findings suggest that forming a Janus superlattice is a promising approach for regulating the photoelectronic properties of semiconductors, providing a promising way to design high efficiency photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt02531kDOI Listing

Publication Analysis

Top Keywords

carrier mobility
16
photoelectronic properties
8
two-dimensional janus
8
janus mosse/wsse
8
mosse/wsse superlattice
8
photogenerated carriers
8
carriers
5
unique photoelectronic
4
properties two-dimensional
4
superlattice
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!