Aims: Efficiency of neural stem cells (NSCs) therapy for brain injury is restricted by astrogliosis around the damaged region, in which JAK2/STAT3 signaling plays a key role. The SOCS3 that can directly inhibit JAK/STAT3 pathway. Here, we investigated the effects of a fusion peptide that combined kinase inhibitory region (KIR) of SOCS3 and virus trans-activator of transcription (TAT) on biological behavior of cultured NSCs under inflammatory conditions.

Methods: NSCs were isolated from embryonic brain of SD rats, TAT-KIR was synthesized, and penetration rate was evaluated by flow cytometry (FACS). CCK8, immunostaining, and FACS were used to detected of TAT-KIR on the proliferation of NSCs. The expressions of GFAP and β tubulin III positive cells induced by IL6 with/without TAT-KIR were examined by immunostaining and Western blotting to observe the NSCs differentiation, and the effect of TAT-KIR on signaling cross talk was observed by Western blotting.

Results: Penetration rate of TAT-KIR into primary cultured NSCs was up to 94%. TAT-KIR did not affect the growth and viability of NSCs. It significantly reduced the NSCs proliferation that enhanced by IL-6 stimulation via blocking the cell cycle progression from the G0/G1 to S phase. In addition, TAT-KIR attenuated astrocytic differentiation and kept high level of neuronal differentiation derived from IL-6-induced NSCs. The fate of NSCs differentiation under inflammatory conditions was affected by TAT-KIR, which was associated with synchronous inhibition of STAT3 and AKT, while promoting JNK expression.

Conclusion: TAT-KIR mimetic of SOCS3 could be a promising approach for brain repair via regulating the biological behaviors of exogenous NSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804055PMC
http://dx.doi.org/10.1111/cns.13992DOI Listing

Publication Analysis

Top Keywords

nscs
11
tat-kir
9
astrocytic differentiation
8
neural stem
8
stem cells
8
cross talk
8
cultured nscs
8
penetration rate
8
nscs differentiation
8
differentiation
5

Similar Publications

Ginsenoside Rg1 Promotes the Survival, Proliferation, and Differentiation of Senescent Neural Stem Cells Induced by D-galactose.

Actas Esp Psiquiatr

January 2025

Lab of Stem Cells and Tissue Engineering, Chongqing Medical University, 400016 Chongqing, China; Department of Histology and Embryology, Chongqing Medical University, 400016 Chongqing, China.

Background: Neural stem cells (NSCs) disrupt with aging, contributing to neurodegeneration. Ginsenoside Rg1 (Rg1), a compound found in Ginseng, is known for its anti-aging effects; however, its role in the progression of aging NSCs remains unclear. Therefore, this investigation explored the impact of Rg1 on the growth and maturation of aging NSC and elucidated its underlying molecular mechanisms.

View Article and Find Full Text PDF

Sugar conditioning combined with nectar nonsugar compounds enhances honey bee pollen foraging in a nectarless diocious crop.

Sci Rep

January 2025

Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees.

View Article and Find Full Text PDF

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

Cerebral ischemia-reperfusion injury (CIRI) constitutes a significant etiology of exacerbated cerebral tissue damage subsequent to intravenous thrombolysis and endovascular mechanical thrombectomy in patients diagnosed with acute ischemic stroke. The treatment of CIRI has been extensively investigated through a multitude of clinical studies. Acupuncture has been demonstrated to be effective in treating CIRI.

View Article and Find Full Text PDF

Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!