Understanding crystal growth kinetics is of great importance for the development and manufacturing of crystalline molecular materials. In this work, the impact of additives on the growth kinetics of benzamide form I (BZM-I) crystals has been studied. Using our newly developed crystal growth setup for the measurement of facet-specific crystal growth rates under flow, BZM-I growth rates were measured in the presence of various additives previously reported to induce morphological changes. The additives did not have a significant impact on the growth rates of BZM-I at low concentrations. By comparison to other systems, these additives could not be described as "effective" since BZM-I showed a high tolerance of the additives' presence during growth, which may be a consequence of the type of growth mechanisms at play. Growth of pure BZM-I was found to be extremely defected, and perhaps those defects allow the accommodation of impurities. An alternative explanation is that at low additive concentrations, solid solutions are formed, which was indeed confirmed for a few of the additives. Additionally, the growth of BZM-I was found to be significantly affected by solution dynamics. Changes in some facet growth rates were observed with changes in the orientation of the BZM-I single crystals relative to the solution flow. Of the two sets of facets involved in the growth of the width and length of the crystal, the {10} facets were found to be greatly affected by the solution flow while the {011} facets were not affected at all. Computational fluid dynamics simulations showed that solute concentration has higher gradients at the edges of the leading edge {10} facets, which can explain the appearance of satellite crystals. {10} facets were found to show significant structural rugosity at the molecular level, which may play a role in their mechanism of growth. The work highlights the complexities of measuring crystal growth data of even simple systems such as BZM-I, specifically addressing the effect of additives and fluid dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542702PMC
http://dx.doi.org/10.1021/acs.cgd.2c00842DOI Listing

Publication Analysis

Top Keywords

crystal growth
16
growth rates
16
growth
14
solution flow
12
{10} facets
12
benzamide form
8
growth kinetics
8
bzm-i
8
fluid dynamics
8
additives
7

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.

View Article and Find Full Text PDF

Numerous commercially available biopharmaceuticals are frozen or freeze-dried in vials. The temperature at which ice nucleates and its distribution across vials in a batch is critical to the design of freezing and freeze-drying processes. Here we study experimentally how the level of particulate impurities - a key parameter in pharmaceutical manufacturing - affects the ice nucleation behavior.

View Article and Find Full Text PDF

Uranium Extraction from Seawater via Hydrogen Bond Porous Organic Cages.

J Am Chem Soc

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

Uranium (U), a high-performing, low-emission energy source, is driving sustainable economic growth. Herein, we synthesized two crystalline phases (HPOC-α and β) by an unreported amidoxime organic cage used for uranium capture. The revealed crystal structures and uranium adsorption test showed that accessible functional groups were essential to uranyl ions sorption.

View Article and Find Full Text PDF

Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering.

Sci Rep

January 2025

Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.

Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!