Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A hair care mixture formed from a gluconamide derivative and 3-hydroxypropyl ammonium gluconate is known to strengthen hair fibers; however, the mechanism by which the mixture affects hair is unknown. To give insight into the aggregation of the target gluconamide and potential interactions between the gluconate-derived mixture and hair fibers, a range of systems were characterized by X-ray crystallography namely two polymorphic forms of the target gluconamide and three salts of 3-hydroxypropylammonium with sulfuric acid, methane sulfonic acid, and oxalic acid. The gluconamide proves to aggregate and becomes a supramolecular gelator in aniline and benzyl alcohol solution. The resulting gels were characterized by rheology, scanning electron microscopy, proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, and powder X-ray diffraction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9542698 | PMC |
http://dx.doi.org/10.1021/acs.cgd.2c00753 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!