Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlike deep learning which requires large training datasets, correlation filter-based trackers like Kernelized Correlation Filter (KCF) use implicit properties of tracked images (circulant structure) for training in real time. Despite their popularity in tracking applications, there exists significant drawbacks of the tracker in cases like occlusions and out-of-view scenarios. This paper attempts to address some of these drawbacks with a novel RGB-D Kernel Correlation tracker in target re-detection. Our target re-detection framework not only re-detects the target in challenging scenarios but also intelligently adapts to avoid any boundary issues. Our results are experimentally evaluated using (a) standard dataset and (b) real time using the Microsoft Kinect V2 sensor. We believe this work will set the basis for improvement in the effectiveness of kernel-based correlation filter trackers and will further the development of a more robust tracker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535240 | PMC |
http://dx.doi.org/10.1007/s00530-022-00996-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!