Background: Glucoside natural products have been showing great medicinal values and potentials. However, the production of glucosides by plant extraction, chemical synthesis, and traditional biotransformation is insufficient to meet the fast-growing pharmaceutical demands. Microbial synthetic biology offers promising strategies for synthesis and diversification of plant glycosides.
Results: In this study, the two efficient UDP-glucosyltransferases (UGTs) (UGT85A1 and RrUGT3) of plant origin, that are capable of recognizing phenolic aglycons, are characterized in vitro. The two UGTs show complementary regioselectivity towards the alcoholic and phenolic hydroxyl groups on phenolic substrates. By combining a developed alkylphenol bio-oxidation system and these UGTs, twenty-four phenolic glucosides are enzymatically synthesized from readily accessible alkylphenol substrates. Based on the bio-oxidation and glycosylation systems, a number of microbial cell factories are constructed and applied to biotransformation, giving rise to a variety of plant and plant-like O-glucosides. Remarkably, several unnatural O-glucosides prepared by the two UGTs demonstrate better prolyl endopeptidase inhibitory and/or anti-inflammatory activities than those of the clinically used glucosidic drugs including gastrodin, salidroside and helicid. Furthermore, the two UGTs are also able to catalyze the formation of N- and S-glucosidic bonds to produce N- and S-glucosides.
Conclusions: Two highly efficient UGTs, UGT85A1 and RrUGT3, with distinct regioselectivity were characterized in this study. A group of plant and plant-like glucosides were efficiently synthesized by cell-based biotransformation using a developed alkylphenol bio-oxidation system and these two UGTs. Many of the O-glucosides exhibited better PEP inhibitory or anti-inflammatory activities than plant-origin glucoside drugs, showing significant potentials for new glucosidic drug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9549646 | PMC |
http://dx.doi.org/10.1186/s12934-022-01935-w | DOI Listing |
Foods
December 2024
Food Toxicology Unit, Department of Life and Environmental Science, University of Cagliari, University Campus of Monserrato, 09042 Cagliari, Italy.
Artichoke ( L.) is an herbaceous perennial plant from the Mediterranean Basin, cultivated as a poly-annual crop in different countries. Artichoke produces a considerable amount of waste at the end of the harvesting season in the field (5.
View Article and Find Full Text PDFMolecules
December 2024
Food Technology Division, University of Almería, 04120 Almeria, Spain.
London rocket () is a wild green consumed globally, yet its phytochemical composition remains underexplored. In this study, we analyzed the leaves of wild plants and those grown in controlled environments (GCE) with varying electrical conductivities (EC) and light spectra. Plants were assessed for growth, phenolic content, vitamin C, antioxidant activity, glucosinolates, and antiproliferative effects against HT-29 human colorectal cancer cells.
View Article and Find Full Text PDFFood Res Int
January 2025
Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany. Electronic address:
Phenolic compounds are known for their health-promoting effects on humans. Pak choi (Brassica rapa ssp. chinensis) and Swiss chard (Beta vulgaris subsp.
View Article and Find Full Text PDFMolecules
December 2024
Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, University of Bordeaux, F-33140 Villenave d'Ornon, France.
Resveratrol and its glucoside, piceid, are the primary stilbenes present in wine. These compounds are well known for their pharmaceutical properties. However, these compounds can undergo chemical transformations in wines, such as polymerization in the presence of metallic reagents.
View Article and Find Full Text PDFMolecules
December 2024
Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland.
Ethanolic extracts from the roots and aerial parts of the hitherto chemically uninvestigated lettuce species Willd. (Cichorieae, Asteraceae) were chromatographically separated to obtain eight sesquiterpenoids, two apocarotenoids (loliolide and (6,9) roseoside), and three phenolic glucosides (apigenin 7--glucoside, eugenyl-4---glucopyranoside, and 5-methoxyeugenyl-4---glucopyranoside). Four of the isolated sesquiterpene lactones (8--angeloyloxyleucodin, matricarin, 15-deoxylactucin, and deacetylmatricarin 8--glucopyranoside) have not previously been found either in spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!