The development of gene therapies for the treatment of diseases of the central nervous system has been hindered by the limited availability of adeno-associated viruses (AAVs) that efficiently traverse the blood-brain barrier (BBB). Here, we report the rational design of AAV9 variants displaying cell-penetrating peptides on the viral capsid and the identification of two variants, AAV.CPP.16 and AAV.CPP.21, with improved transduction efficiencies of cells of the central nervous system on systemic delivery (6- to 249-fold across 4 mouse strains and 5-fold in cynomolgus macaques, with respect to the AAV9 parent vector). We also show that the neurotropism of AAV.CPP.16 is retained in young and adult macaques, that this variant displays enhanced transcytosis at the BBB as well as increased efficiency of cellular transduction relative to AAV9, and that it can be used to deliver antitumour payloads in a mouse model of glioblastoma. AAV capsids that can efficiently penetrate the BBB will facilitate the clinical translation of gene therapies aimed at the central nervous system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41551-022-00938-7 | DOI Listing |
JAMA Netw Open
December 2024
Department of Emergency Medicine, Emory University, Atlanta, Georgia.
Importance: Recreational use of drug-soaked paper strips (hereafter, strips) in correctional facilities poses a major public health risk owing to the diverse and potentially severe toxic effects of the substances they contain. Understanding the clinical manifestations and outcomes of exposure to these strips is important for developing effective management and prevention strategies.
Objective: To characterize the clinical manifestations, management, and outcomes of intoxication from strips in a correctional facility population, and to identify the specific substances present in these strips.
Mol Cell Biochem
December 2024
Department XIII Infectious Diseases-Parasitology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania.
The global burden of cancer as a major cause of death and invalidity has been constantly increasing in the past decades. Monoamine oxidases (MAO) with two isoforms, MAO-A and MAO-B, are mammalian mitochondrial enzymes responsible for the oxidative deamination of neurotransmitters and amines in the central nervous system and peripheral tissues with the constant generation of hydrogen peroxide as the main deleterious ancillary product. However, given the complexity of cancer biology, MAO involvement in tumorigenesis is multifaceted with different tumors displaying either an increased or decreased MAO profile.
View Article and Find Full Text PDFMol Neurobiol
December 2024
NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China.
Co-exposure to methamphetamine (METH) abuse and HIV infection exacerbates central nervous system damage. However, the underlying mechanisms of this process remain poorly understood. This study aims to explore the roles of neuronal autophagy in the synergistic damage to the central nervous system caused by METH and HIV proteins.
View Article and Find Full Text PDFHypervirulent Klebsiella pneumoniae (hvKp) can cause life-threatening infections in healthy community members. HvKp infections often involve multiple sites, some of which are unusual for classical K. pneumoniae (cKp) infections, such as the central nervous system, eyes, and fascia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!