Maintaining the stemness of the transplanted stem cell spheroids in an inflammatory microenvironment is challenging but important in regenerative medicine. Direct delivery of stem cells to repair periodontal defects may yield suboptimal effects due to the complexity of the periodontal inflammatory environment. Herein, stem cell spheroid is encapsulated by interfacial assembly of metal-phenolic network (MPN) nanofilm to form a stem cell microsphere capsule. Specifically, periodontal ligament stem cells (PDLSCs) spheroid was coated with Fe/tannic acid coordination network to obtain spheroid@[Fe-TA] microcapsules. The formed biodegradable MPN biointerface acted as a cytoprotective barrier and exhibited antioxidative, antibacterial and anti-inflammatory activities, effectively remodeling the inflammatory microenvironment and maintaining the stemness of PDLSCs. The stem cell microencapsulation proposed in this study can be applied to multiple stem cells with various functional metal ion/polyphenol coordination, providing a simple yet efficient delivery strategy for stem cell stemness maintenance in an inflammatory environment toward a better therapeutic outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9551082PMC
http://dx.doi.org/10.1038/s41368-022-00198-wDOI Listing

Publication Analysis

Top Keywords

stem cell
24
inflammatory microenvironment
12
stem cells
12
stem
9
cell microencapsulation
8
microenvironment maintaining
8
maintaining stemness
8
inflammatory environment
8
inflammatory
5
cell
5

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!