Structure basis of CFTR folding, function and pharmacology.

J Cyst Fibros

Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France. Electronic address:

Published: March 2023

Similar Publications

Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers investigated the G85E-CFTR variant using human nasal epithelial cells and found that the drugs elexacaftor and tezacaftor modestly improved CFTR function, but chronic treatment with ivacaftor had negative effects.
  • * The study suggests that combining elexacaftor with a new corrector, ARN23765, can significantly enhance CFTR activity and highlights the need for better drug combinations to help patients with the G85E mutation.
View Article and Find Full Text PDF

The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of CF. The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery.

View Article and Find Full Text PDF

Most neurodegenerative diseases share a common etiopathogenesis, the accumulation of protein aggregates. An imbalance in homeostasis brought on by the buildup of misfolded proteins within the endoplasmic reticulum (ER) results in ER stress in the cell. Three distinct proteins found in the ER membrane-IRE1α, PERK, and ATF6-control the unfolded protein response (UPR), a signal transduction pathway that is triggered to restore normal physiological conditions.

View Article and Find Full Text PDF

Chaperoning system: Intriguing target to modulate the expression of CFTR in cystic fibrosis.

Eur J Med Chem

November 2024

Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.

The correction of protein folding is fundamental for cellular functionality and its failure can lead to severe diseases. In this context, molecular chaperones are crucial players involved in the tricky process of assisting in protein folding, stabilization, and degradation. Chaperones, such as heat shock proteins (HSP) 90, 70, and 60, operate within complex systems, interacting with co-chaperones both to prevent protein misfolding and direct to the correct folding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!