The root cause of cystic fibrosis (CF), the most common life-shortening genetic disease in the Caucasian population, is the loss of function of the CFTR protein, which serves as a phosphorylation-activated, ATP-gated anion channel in numerous epithelia-lining tissues. In the past decade, high-throughput drug screening has made a significant stride in developing highly effective CFTR modulators for the treatment of CF. Meanwhile, structural-biology studies have succeeded in solving the high-resolution three-dimensional (3D) structure of CFTR in different conformations. Here, we provide a brief overview of some striking features of CFTR folding, function and pharmacology, in light of its specific structural features within the ABC-transporter superfamily. A particular focus is given to CFTR's first nucleotide-binding domain (NBD1), because folding of NBD1 constitutes a bottleneck in the CFTR protein biogenesis pathway, and ATP binding to this domain plays a unique role in the functional stability of CFTR. Unraveling the molecular basis of CFTR folding, function, and pharmacology would inspire the development of next-generation mutation-specific CFTR modulators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcf.2022.09.010 | DOI Listing |
Mol Ther
January 2025
Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy. Electronic address:
Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.
View Article and Find Full Text PDFFront Pharmacol
November 2024
UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy.
Proc Natl Acad Sci U S A
October 2024
The James Tarpo Junior and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47907.
The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of CF. The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery.
View Article and Find Full Text PDFCurr Issues Mol Biol
August 2024
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy.
Most neurodegenerative diseases share a common etiopathogenesis, the accumulation of protein aggregates. An imbalance in homeostasis brought on by the buildup of misfolded proteins within the endoplasmic reticulum (ER) results in ER stress in the cell. Three distinct proteins found in the ER membrane-IRE1α, PERK, and ATF6-control the unfolded protein response (UPR), a signal transduction pathway that is triggered to restore normal physiological conditions.
View Article and Find Full Text PDFEur J Med Chem
November 2024
Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
The correction of protein folding is fundamental for cellular functionality and its failure can lead to severe diseases. In this context, molecular chaperones are crucial players involved in the tricky process of assisting in protein folding, stabilization, and degradation. Chaperones, such as heat shock proteins (HSP) 90, 70, and 60, operate within complex systems, interacting with co-chaperones both to prevent protein misfolding and direct to the correct folding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!