Impact of photon counting detector CT derived virtual monoenergetic images and iodine maps on the diagnosis of pleural empyema.

Diagn Interv Imaging

Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100 CH-8091 Zurich, Switzerland. Electronic address:

Published: February 2023

Purpose: The purpose of this study was to evaluate the impact of virtual monoenergetic image (VMI) energies and iodine maps on the diagnosis of pleural empyema with photon counting detector computed tomography (PCD-CT).

Materials And Methods: In this IRB-approved retrospective study, consecutive patients with non-infectious pleural effusion or histopathology-proven empyema were included. PCD-CT examinations were performed on a dual-source PCD-CT in the multi-energy (QuantumPlus) mode at 120 kV with weight-adjusted intravenous contrast-agent. VMIs from 40-70 keV obtained in 10 keV intervals and an iodine map was reconstructed for each scan. CT attenuation was measured in the aorta, the pleura and the peripleural fat (between autochthonous dorsal muscles and dorsal ribs). Contrast-to-noise (CNR) and signal-to-noise (SNR) ratios were calculated. Two blinded radiologists evaluated if empyema was present (yes/no), and rated diagnostic confidence (1 to 4; not confident to fully confident, respectively) with and without using the iodine map. Sensitivity, specificity and diagnostic confidence were estimated. Interobserver agreement was estimated using an unweighted Cohen kappa test. A one-way ANOVA was used to compare variables. Differences in sensitivity and specificity between the different levels of energy were searched using McNemar test.

Results: Sixty patients (median age, 60 years; 26 women) were included. A strong negative correlation was found between image noise and VMI energies (r = -0.98; P = 0.001) and CNR increased with lower VMI energies (r = -0.98; P = 0.002). Diagnostic accuracy (96%; 95% CI: 82-100) as well as diagnostic confidence (3.4 ± 0.75 [SD]) were highest at 40 keV. Diagnostic accuracy and confidence at higher VMI energies improved with the addition of iodine maps (P ≤0.001). Overall, no difference in CT attenuation of peripleural fat between patients with empyema and those with pleural effusion was found (P = 0.07).

Conclusion: Low VMI energies lead to a higher diagnostic accuracy and diagnostic confidence in the diagnosis of pleural empyema. Iodine maps help in diagnosing empyema only at high VMI energies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diii.2022.09.006DOI Listing

Publication Analysis

Top Keywords

vmi energies
24
iodine maps
16
diagnostic confidence
16
diagnosis pleural
12
pleural empyema
12
diagnostic accuracy
12
photon counting
8
counting detector
8
virtual monoenergetic
8
maps diagnosis
8

Similar Publications

Objectives: This study evaluates the performance of a clinical dual-source photon-counting computed tomography (PCCT) system in quantifying iodine within calcified vessels, using 3D- printed phantoms with vascular-like structures lined with calcium.

Methods: Parameters assessed include lumen diameters (4, 6, 8, 10, and 12 mm), phantom sizes (S: 20×20 cm, M: 25×25 cm, L: 30×40 cm, XL: 40×50 cm, representing the 99th percentile of US patient sizes), and iodine concentrations (2, 5, and 10 mg/mL). Scans were performed at radiation dose levels of 5, 10, 15, and 20 mGy to systematically evaluate iodine quantification accuracy and spectral imaging performance.

View Article and Find Full Text PDF

Anion photoelectron velocity-map imaging using a tunable laser at a 100 kHz repetition rate.

J Chem Phys

January 2025

Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

We present velocity-map imaging (VMI) of photoelectrons detached from anions using an optical parametric amplifier operating at a repetition rate as high as 100 kHz. The light source generates femtosecond (fs) laser pulses tunable from near-infrared to ultraviolet (310-2600 nm), which interact synchronously with mass-selected anion bunches. We demonstrate this technique by measuring two-dimensional projections of photoelectrons ejected from silver trimer anions, Ag3-, across a photon energy range from 2.

View Article and Find Full Text PDF

We present the design of a VMI spectrometer optimized for attosecond spectroscopy in the 0-40 eV energy range. It is based on a compact three-electrode configuration where the lens shape, size, and material have been optimized using numerical simulations to improve the spectral resolution by a factor of ∼5 relative to the initial design [Eppink and Parker, Rev. Sci.

View Article and Find Full Text PDF

Improving Diagnostic Accuracy in Acute Pulmonary Embolism: Insights from Spectral Dual-energy CT.

Curr Med Imaging

January 2025

Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital,3002 SunGangXi Road, Shenzhen, China.

Purpose: This study aims to evaluate the clinical efficacy of spectral dual-energy detector computed tomography (SDCT) and its associated parameters in diagnosing acute pulmonary embolism (APE).

Methods: Retrospective analysis of imaging data from 86 APE-diagnosed patients using SDCT was conducted. Virtual monoenergetic images (VMIs) at 40, 70, and 100 KeV, Iodine concentration (IC) maps, Electron Cloud Density Map (ECDM), Effective atomic number (Z-eff) maps, and Hounsfield unit attenuation plots (VMI slope) were reconstructed from pulmonary artery phase CT images.

View Article and Find Full Text PDF

Artifact Reduction in Interventional Devices Using Virtual Monoenergetic Images and Iterative Metal Artifact Reduction on Photon-Counting Detector CT.

Invest Radiol

January 2025

From the Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany (Y.C.L., N.M., P.A.K., A.I., T.D., J.A.L., D.K.); and Siemens Healthineers AG, Erlangen, Germany (S.F., V.H., B.S.).

Objectives: The aim of this study was to assess the impact of an iterative metal artifact reduction (iMAR) algorithm combined with virtual monoenergetic images (VMIs) for artifact reduction in photon-counting detector computed tomography (PCDCT) during interventions.

Materials And Methods: Using an abdominal phantom, we conducted evaluations on the efficacy of iMAR and VMIs for mitigating image artifacts during interventions on a PCDCT. Four different puncture devices were employed under 2 scan modes (QuantumSn at 100 kV, Quantumplus at 140 kV) to simulate various clinical scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!