In this article, the problem of decentralized fuzzy adaptive control is addressed for a class of stochastic interconnected nonlinear large-scale systems including saturation and unknown disturbance. Fuzzy logic systems (FLSs) are used to estimate packaged nonlinear uncertainties. The command filter technique is presented to eliminate the "explosion of complexity" obstacle associated with the backstepping procedures and the corresponding error compensation mechanism is constructed to alleviate the effect of the errors generated by command filters. The influence of input saturation is compensated by introducing an auxiliary system. Meanwhile, an improved adaptive fuzzy decentralized controller is developed and it is able to minimize calculation time since there is no need for repeated differentiation for the virtual control laws. The presented control scheme not only assures the semi-global boundedness of all the signals in the closed-loop system, but also makes the output tracking errors reach a small neighborhood around the origin. Finally, both numerical and practical examples are provided to illustrate the efficiency and effectiveness of our theoretic result.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2022.09.028 | DOI Listing |
Biodegradation
December 2024
Department of Civil engineering, Islamic Azad university, Mashhad Branch, Iran.
The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).
View Article and Find Full Text PDFSci Rep
December 2024
Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.
Coronary artery disease (CAD) is the main cause of death. It is a complex heart disease that is linked with many risk factors and a variety of symptoms. In the past few years, CAD has experienced a remarkable growth.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
In today's technologically advanced landscape, precision in navigation and positioning holds paramount importance across various applications, from robotics to autonomous vehicles. A common predicament in location-based systems is the reliance on Global Positioning System (GPS) signals, which may exhibit diminished accuracy and reliability under certain conditions. Moreover, when integrated with the Inertial Navigation System (INS), the GPS/INS system could not provide a long-term solution for outage problems due to its accumulated errors.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematics, Payame Noor University, Tehran, Iran.
In the realm of petroleum extraction, well productivity declines as reservoirs deplete, eventually reaching a point where continued extraction becomes economically unfeasible. To counteract this, artificial lift techniques are employed, with gas injection being a prevalent method. Ideally, unrestricted gas injection could maximize oil output.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
To tackle the challenges of poor stability during real-time random gait switching and precise trajectory control for hexapod robots under limited stride and steering conditions, a novel real-time replanning gait switching control strategy based on an omnidirectional gait and fuzzy inference is proposed, along with an attitude control method based on the single-neuron adaptive proportional-integral-derivative (PID). To start, a kinematic model of a hexapod robot was developed through the Denavit-Hartenberg (D-H) kinematics analysis, linking joint movement parameters to the end foot's endpoint pose, which formed the foundation for designing various gaits, including omnidirectional and compound gaits. Incorporating an omnidirectional gait could effectively resolve the challenge of precise trajectory control for the hexapod robot under limited stride and steering conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!