Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a novel model of time-series analysis to learn from electronic health record (EHR) data when infection occurred in the intensive care unit (ICU) by translating methods from proteomics and Bayesian statistics. Using 48,536 patients hospitalized in an ICU, we describe each hospital course as an 'alphabet' of 23 physician actions ('events') in temporal order. We analyze these as k-mers of length 3-12 events and apply a Bayesian model of (cumulative) relative risk (RR). The log2-transformed RR (median=0.248, mean=0.226) supported the conclusion that the events selected were individually associated with increased risk of infection. Selecting from all possible cutoffs of maximum gain (MG), MG>0.0244 predicts administration of antibiotics with PPV 82.0 %, NPV 44.4 %, and AUC 0.706. Our approach holds value for retrospective analysis of other clinical syndromes for which time-of-onset is critical to analysis but poorly marked in EHRs, including delirium and decompensation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.202200657 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!