A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sequences of Events from the Electronic Medical Record and the Onset of Infection. | LitMetric

Sequences of Events from the Electronic Medical Record and the Onset of Infection.

Chem Biodivers

Department of Biomedical Informatics, The Ohio State University College of Medicine, 370 W 9th Ave, Columbus, OH 43210, USA.

Published: November 2022

We present a novel model of time-series analysis to learn from electronic health record (EHR) data when infection occurred in the intensive care unit (ICU) by translating methods from proteomics and Bayesian statistics. Using 48,536 patients hospitalized in an ICU, we describe each hospital course as an 'alphabet' of 23 physician actions ('events') in temporal order. We analyze these as k-mers of length 3-12 events and apply a Bayesian model of (cumulative) relative risk (RR). The log2-transformed RR (median=0.248, mean=0.226) supported the conclusion that the events selected were individually associated with increased risk of infection. Selecting from all possible cutoffs of maximum gain (MG), MG>0.0244 predicts administration of antibiotics with PPV 82.0 %, NPV 44.4 %, and AUC 0.706. Our approach holds value for retrospective analysis of other clinical syndromes for which time-of-onset is critical to analysis but poorly marked in EHRs, including delirium and decompensation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202200657DOI Listing

Publication Analysis

Top Keywords

sequences events
4
events electronic
4
electronic medical
4
medical record
4
record onset
4
onset infection
4
infection novel
4
novel model
4
model time-series
4
time-series analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!