Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glaesserella parasuis is a pathogen causing Glässer's disease characterized by fibrinous polyserositis, polyarthritis, and meningitis. Owing to the low cross-immunogenicity of different bacterial antigens in commercial vaccines, finding and identifying effective immunoprotective antigens will facilitate the development of novel subunit vaccines. In this study, LolA, identified by bioinformatics approaches, was cloned and successfully expressed as a recombinant protein in Escherichia coli, and its immunogenicity and protection were evaluated in a mouse model. The results showed that the recombinant protein LolA can stimulate mice to produce high levels of IgG antibodies and confer 50% protection against challenge with the highly virulent G. parasuis CY1201 strain (serotype 13). By testing the cytokine levels of interleukin 4 (IL-4), IL-10, and interferon-γ (IFN-γ), it was found that the recombinant protein LolA can induce both Th1 and Th2 immune responses in mice. These results suggest that the recombinant protein LolA has the potential to serve as an alternative antigen for a novel vaccine to prevent G. parasuis infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705812 | PMC |
http://dx.doi.org/10.1292/jvms.22-0203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!