Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background/aims: Gastroprokinetic agents are used for patients with postoperative ileus (POI), and the Japanese traditional herbal medicine daikenchuto (DKT) is one such agent used in the clinical setting. POI is caused by inflammation. DKT and rikkunshito have anti-inflammatory abilities in addition to their gastroprokinetic effects. The efficacy of Kampo formulations, including hangekobokuto (HKT), in patients with POI has been reported recently. Several authors have described the efficacy of honokiol, the primary component of Magnoliae Cortex, in HKT in mouse models of POI. We therefore analyzed the effect of HKT on POI model mice to determine the similarities in the mechanism of action between HKT and DKT.
Methods: HKT was administered orally to each mouse before and after intestinal manipulation was performed on the distal ileum. The gastrointestinal transit in vivo, leukocyte infiltration, and levels of inflammatory mediators, such as cytokines and chemokines, were analyzed.
Results: HKT significantly inhibited the infiltration of neutrophils and macrophages and led to the recovery of delayed intestinal transit. In addition, it significantly decreased inducible nitric oxide synthase (iNOS) as well as honokiol levels, suggesting anti-inflammatory activity. However, it did not inhibit the increase in levels of interleukin (IL)-1beta and IL-6, which are related to iNOS induction. In contrast, HKT increased levels of nerve growth factor (NGF) and suppressed those of nuclear factor-κB (NFκB), which are related to iNOS induction, suggesting the possibility of a neuronal anti-inflammatory mechanism.
Conclusions: HKT exerted a POI-relieving effect similar to DKT in a murine POI model, and findings suggest that it may exert its anti-inflammatory activity through NGF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537061 | PMC |
http://dx.doi.org/10.1540/jsmr.58.78 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!