Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Novel technologies and platforms have allowed significant breakthroughs in dental pulp tissue engineering. The development of injectable scaffolds that can be combined with stem cells, growth factors, or other bioactive compounds has enabled the regeneration of functional dental pulps able to secrete dentin in preclinical and clinical studies. Similarly, cell-homing technologies and scaffold-free strategies aim to modulate dental pulp self-regeneration mediated by resident stem cells and can evade some of the technical challenges related to cell-based tissue engineering strategies. This article will discuss emerging technologies and platforms for the clinical applications of dental pulp tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cden.2022.05.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!