The present study dealt with the fabrication of zinc sulfide (ZnS) nanoparticles (NPs), prepared using the chemical precipitation method, mediated poly(hydroxybutyrate) (PHB)/poly(lactic acid) (PLA) composite films employing the solution casting approach. The films were characterized based on structural, surface, chemo-physical, thermal, electrical, antibacterial, UV protection and degradation profiles. The results demonstrated the successful formation of nanobiocomposite films with good intercalation of the constituents. The surface morphology results expressed the placement of ZnS NPs in the polymeric blend as supported by elemental analysis. The XRD analysis exhibited the crystalline behavior of the nanobiocomposite films. The surface wettability analysis indicated that with the inclusion of ZnS NPs, the water contact angle of the resultant film was observed to be 119.57°. The prepared nanobiocomposite film exhibited thermal stability up to 214 °C and tensile strength of 25.0 ± 2.4 MPa as compared to that of native PHB (as 15.0 ± 1.5 MPa) and PLA (as 20.0 ± 2 MPa) films. The nanobiocomposite films expressed good antibacterial properties as compared to the control. The prepared films expressed the degradability trends in the natural environment. The ZnS NPs inclusion in the PLA/PHB blend could enhance the AC conductivity of the resultant nanobiocomposite film with acceptable UV protection properties applicable for UV protective packings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.10.006DOI Listing

Publication Analysis

Top Keywords

nanobiocomposite films
12
zns nps
12
zinc sulfide
8
nanobiocomposite film
8
films expressed
8
films
7
nanobiocomposite
5
sulfide mediation
4
mediation polyhydroxybutyrate/polylactic
4
polyhydroxybutyrate/polylactic acid
4

Similar Publications

In the study, Poly Vinyl Alcohol (PVA) films engineered with the nanoparticles and essential oils have been developed as efficient alternative to the currently used food packaging materials. For this, impact of cinnamon essential oil (CEO), on the metabolomic profile of Staphylococcus aureus, Escherichia coli and Aspergillus flavus was analysed. Subsequently, PVA based nanocomposite films CEO, zinc oxide nanoparticles (ZnONPs), and nanocellulose (NC) were synthesised and characterized by FT-IR analysis.

View Article and Find Full Text PDF

Observation of Ultrahigh Photoconductivity in DNA-MoS Nano-Biocomposite.

Adv Mater

July 2024

Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

A nano-biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio-optoelectronic applications. A uniform, well-connected, high-concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer-scale continuous nano-biocomposite film without surface deformations and cracks plays another major obstacle.

View Article and Find Full Text PDF

The rapid acceleration of industrialization and urbanization has exacerbated water pollution, which is primarily caused by the presence of highly toxic, non-biodegradable contaminants in industrial waste and effluents. In response to this urgent issue, a novel nanobiocomposite film with titanium dioxide (TiO) loaded onto a poly(3-hydroxybutyrate-co-18 mol% 3-hydroxyhexanoate) (18PHBH) matrix was developed to serve as an effective dual-function material with photocatalytic and antibacterial properties. Through Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR), Diffuse reflectance ultraviolet-visible (DRUV-Vis), Scanning Electron Microscope (SEM), and X-ray diffraction (XRD) analyses, the physicochemical properties of the TiO/Gly/18PHBH nanobiocomposite film were exhaustively characterized, revealing effective TiO loading and uniform distribution on the film's surface.

View Article and Find Full Text PDF

Antifungal Activity of Nanobiocomposite Films Based on Silver Nanoparticles Obtained Through Green Synthesis.

Curr Microbiol

June 2023

Grupo de Química de Materiais Avançados (GQMat) - Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará (UFC), Campus do Pici, CP 12100, Fortaleza, CE, 60451-970, Brazil.

The high incidence of Candida albicans infections has raised concerns regarding side effects and drug resistance, compounded by a limited number of alternative drugs. Silver nanoparticles (AgNPs) have prominent antimicrobial activity, but effective administration remains a challenge. In this study, AgNPs were synthesized via a green chemistry approach, using glucose as a reducing agent, and incorporated into an agar matrix to form a film (AgFilm).

View Article and Find Full Text PDF

The present study dealt with the fabrication of zinc sulfide (ZnS) nanoparticles (NPs), prepared using the chemical precipitation method, mediated poly(hydroxybutyrate) (PHB)/poly(lactic acid) (PLA) composite films employing the solution casting approach. The films were characterized based on structural, surface, chemo-physical, thermal, electrical, antibacterial, UV protection and degradation profiles. The results demonstrated the successful formation of nanobiocomposite films with good intercalation of the constituents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!