Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The combination of two-dimensional materials (2D) into heterostructures enables their integration in tunable ultrathin devices. For applications in electronics and optoelectronics, direct growth of wafer-scale and vertically stacked graphene/hexagonal boron nitride (h-BN) heterostructures is vital. The fundamental problem, however, is the catalytically inert nature of h-BN substrates, which typically provide a low rate of carbon precursor breakdown and consequently a poor rate of graphene synthesis. Furthermore, out-of-plane deformations such as wrinkles are commonly seen in 2D materials grown by chemical vapor deposition (CVD). Herein, a wrinkle-facilitated route is developed for the fast growth of graphene/h-BN vertical heterostructures on Cu foils. The key advantage of this synthetic pathway is the exploitation of the increased reactivity from inevitable line defects arising from the CVD process, which can act as active sites for graphene nucleation. The resulted heterostructures are found to exhibit superlubric properties with increased bending stiffness, as well as directional electronic properties, as revealed from atomic force microscopy measurements. This work offers a brand-new route for the fast growth of Gr/h-BN heterostructures with practical scalability, thus propelling applications in electronics and nanomechanical systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac98d0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!