ComEDA: A new tool for stress assessment based on electrodermal activity.

Comput Biol Med

Bioengineering and Robotics Research Centre E. Piaggio and Dipartimento di Ingegneria dell'Informazione, University of Pisa, Largo Lucio Lazzarino 1, Pisa, 56122, Italy.

Published: November 2022

Non-specific sympathetic arousal responses to different stressful elicitations can be easily recognized from the analysis of physiological signals. However, neural patterns of sympathetic arousal during physical and mental fatigue are clearly not unitary. In the context of physiological monitoring through wearable and non-invasive devices, electrodermal activity (EDA) is the most effective and widely used marker of sympathetic activation. This study presents ComEDA, a novel approach for the characterization of complex dynamics of EDA. ComEDA overcomes the methodological limitations related to the application of nonlinear analysis to EDA dynamics, is not parameter-sensitive and is suitable for the analysis of ultra-short time series. We validated the proposed algorithm using synthetic series of white noise and 1/f noise, varying the number of samples from 50 to 5000. By applying our approach, we were able to discriminate a statistically significant increase of complexity in the 1/f noise with respect to white noise, obtaining p-values in the range [4.35 × 10, 0.03] after the Mann-Whitney test. Then, we tested ComEDA on both EDA signal and its tonic and phasic components, acquired from healthy subjects during four experimental protocols: two inducing a sympathetic activation through physical efforts and two based on mentally stressful tasks. Results are encouraging and promising, outperforming state of the art metrics such as the Sample Entropy. ComEDA shows good performance not only in discriminating between stressful tasks and resting state (p-value < 0.01 after the Wilcoxon non-parametric statistical test applied to EDA signals of all the four datasets), but also in differentiating different trends of complexity of EDA dynamics when induced by physical and mental stressors. These findings suggest future applications to automatically detect and selectively identify threats due to overwhelming stress impacting both physical and mental health or in the field of telemedicine to monitor autonomic diseases correlated to atypical sympathetic activation. The Matlab code implementing the ComEDA algorithm is available online.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.106144DOI Listing

Publication Analysis

Top Keywords

electrodermal activity
8
sympathetic arousal
8
sympathetic activation
8
white noise
8
1/f noise
8
stressful tasks
8
comeda
5
comeda tool
4
tool stress
4
stress assessment
4

Similar Publications

Physiological Responses to Aversive and Non-aversive Audiovisual, Audio, and Visual Stimuli.

Biol Psychol

January 2025

Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29201, USA. Electronic address:

We examined differences in physiological responses to aversive and non-aversive naturalistic audiovisual stimuli and their auditory and visual components within the same experiment. We recorded five physiological measures that have been shown to be sensitive to affect: electrocardiogram, electromyography (EMG) for zygomaticus major and corrugator supercilii muscles, electrodermal activity (EDA), and skin temperature. Valence and arousal ratings confirmed that aversive stimuli were more negative in valence and higher in arousal than non-aversive stimuli.

View Article and Find Full Text PDF

Imaginal exposure is a standard procedure of cognitive behavioral therapy for the treatment of anxiety and panic disorders. It is often used when in vivo exposure is not possible, too stressful for patients, or would be too expensive. The Bio-Informational Theory implies that imaginal exposure is effective because of the perceptual proximity of mental imagery to real events, whereas empirical findings suggest that propositional thought of fear stimuli (i.

View Article and Find Full Text PDF

Background: The prompt and accurate identification of mild cognitive impairment (MCI) is crucial for preventing its progression into more severe neurodegenerative diseases. However, current diagnostic solutions, such as biomarkers and cognitive screening tests, prove costly, time-consuming, and invasive, hindering patient compliance and the accessibility of these tests. Therefore, exploring a more cost-effective, efficient, and noninvasive method to aid clinicians in detecting MCI is necessary.

View Article and Find Full Text PDF

The aim of this study was to explore the feasibility of using electrodermal activity (EDA) to detect changes in physiological arousal linked to perceptions of accommodations, focusing on universal design (UD) features. In environments like hotels, designers must consider wellness, social integration, and cultural appropriateness to effectively implement UD. Challenges exist with implementing and evaluating UD to accommodate diverse user needs due to conflicting definitions and application issues.

View Article and Find Full Text PDF

Exploring the Correlation of Physiological Stress Signals with Student Exam Performance: A Preliminary Study.

Appl Psychophysiol Biofeedback

January 2025

Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.

Stress responses in real-world settings are less studied compared to controlled laboratory environments, limiting our understanding of their impact on cognitive performance. This study investigates the relationship between physiological stress signals and academic performance using an open-access dataset of 10 students assessed across three exam sessions (Midterm 1, Midterm 2, and Final Exam). Physiological measures, including electrodermal activity (EDA), heart rate (HR), and skin surface temperature (TEMP), along with exam grades, were analyzed using traditional hypothesis testing, bootstrap method, correlation analysis, and regression tree modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!