In-situ activator-induced evolution of morphology on carbon materials for supercapacitors.

J Colloid Interface Sci

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China. Electronic address:

Published: January 2023

Carbonaceous materials with diverse morphologies have shown unique and excellent performance in many fields, such as catalysis, adsorption, separation and energy storage. However, regulating the structural changes of these morphologies accurately using simple approaches is a difficult process. In this study, porous carbon materials with a morphology that changed from carbon spindles to fold-carbon spheres and then to regular carbon spheres were prepared assisted by in-situ activator of KNO in co-assembly of resorcinol/phenol resin and 1-alkyl-3-methylimidazolium bromide. The activation of KNO greatly improves the hydrophily, pore volume and surface area of the inert carbon skeleton, and increases heteroatom defects for the carbon framework. As electrode materials of supercapacitors, the influence of different structures on energy storage performance was studied. The obtained fold-carbon spheres showed a higher capacitance (405 F g) than flake, spindle and spherical porous carbon, which is due to convenient electrolyte transmission and completely available active sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.09.113DOI Listing

Publication Analysis

Top Keywords

carbon materials
8
materials supercapacitors
8
energy storage
8
porous carbon
8
fold-carbon spheres
8
carbon
7
in-situ activator-induced
4
activator-induced evolution
4
evolution morphology
4
morphology carbon
4

Similar Publications

Hierarchical Selenium-Doped Nickel-Cobalt Hybrids on Carbon Paper for the Overall Water-Splitting Electrocatalytic System.

ACS Appl Mater Interfaces

January 2025

Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.

Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.

View Article and Find Full Text PDF

Building insights into the structure-performance relationship of catalysts has been emphasized recently. However, it remains a challenge due to catalysts' various and complex structures, especially the easily overlooked influence of the support material. Here, we reveal the crucial influences of boron introduction on synthesizing 3D carbon nanotube monoliths with embedded multistate Co metals, i.

View Article and Find Full Text PDF

Universal Construction of Electrical Insulation and High-Thermal-Conductivity Composites Based on the In Situ Exfoliation of Boron Nitride-Graphene Hybrid Filler.

ACS Appl Mater Interfaces

January 2025

Institute of Soft-matter and Advanced Functional Materials, Gansu Province Carbon New Material Industry Technology Center, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler.

View Article and Find Full Text PDF

Emerging Trends and Future Opportunities for Battery Recycling.

ACS Energy Lett

January 2025

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

The global lithium-ion battery recycling capacity needs to increase by a factor of 50 in the next decade to meet the projected adoption of electric vehicles. During this expansion of recycling capacity, it is unclear which technologies are most appropriate to reduce costs and environmental impacts. Here, we describe the current and future recycling capacity situation and summarize methods for quantifying costs and environmental impacts of battery recycling methods with a focus on cathode active materials.

View Article and Find Full Text PDF

Surface Composition Impacts Selectivity of ZnTe Photocathodes in Photoelectrochemical CO Reduction Reaction.

ACS Energy Lett

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

Light-driven reduction of CO into chemicals using a photoelectrochemical (PEC) approach is considered as a promising way to meet the carbon neutral target. The very top surface of the photoelectrode and semiconductor/electrolyte interface plays a pivotal role in defining the performance for PEC CO reduction. However, such impact remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!