Tropical theileriosis is one of the major parasitic diseases of ruminants. It is a tick-borne disease caused by an apicomplexan parasite, Theileria annulata. In the infected cells, these parasites induce phenotypes similar to cancerous cells. Among the most critical changes induced by the parasite are immortalization, hyperproliferation, and dissemination. The proliferative signal in the T. annulata transformed cells are provided by different kinases such as mitogen-activated protein kinases, SRC family kinases, casein kinase-2, and phosphatidylinositide 3-kinase. Deregulation of protein kinases in cancer is also well known. Targeting protein kinases in a cancerous cell is one of the most common methods in cancer therapy. Here, we revisited the kinome of T. annulata and studied its evolutionary relationship with other piroplasms. This analysis revealed that T. annulata kinome encodes 54 protein kinases. Based on our analysis, 12 of these 54 kinases were identified for the first time in the T. annulata proteome. Three protein kinases, TA16570, TA09820, and TA07000, had <40% identity with Bos taurus and >40% identity with the previously identified potential drug targets present in the Therapeutic Target Database (TTD). These 3 proteins were predicted to be essential for the survival of T. annulata and were selected as drug targets. Screening these drug targets in the Protein Kinase Inhibitor Database (PKID) led to shortlisting of 5 drugs. Only Dabrafenib, out of these 5 drugs, could bind to the ATP binding site (in silico) of the Calcium Dependent Protein Kinase 3 of both T. annulata and Theileria parva. Further, dabrafenib could inhibit the proliferation of T. annulata infected bovine leucocytes in 6 days proliferation assay with the IC value of 0.66 µM. Also, this drug did not have a cytotoxic effect on bovine peripheral blood mononuclear cells. In summary, the analysis of T. annulata kinome led to the identification of dabrafenib as a potential drug for treating theileriosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ttbdis.2022.102049 | DOI Listing |
Background: DYRK1A overexpression, common in neurodegenerative diseases like Alzheimer's (AD), contributes to neurofibrillary tangles via Tau protein hyperphosphorylation and amyloid plaque formation, key AD hallmarks. Therefore, DYRK1A has been regarded as a novel target for neurodegenerative diseases. However, developing DYRK1A selective inhibitors has been a difficult challenge due to the highly conserved ATP-binding site of protein kinases, particularly among the CMGC family.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: SHIP1 is a phosphatidyl inositol phosphatase encoded by INPP5D, which has been identified as a risk gene for Alzheimer's disease (AD). SHIP1 is expressed in microglia, the resident macrophage in brain. It is a complex, multidomain protein that acts as a negative regulator downstream from TREM2.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutcihe (STEBICEF) Università di Palermo, Via Archirafi 32, 90123 Palermo.
CDK2 plays a pivotal role in controlling the cell cycle progression in eukaryotes and for this reason, it has been the subject of several studies for suitable inhibitors in the last decades. But more than 30 years of basic research have not generated an inhibitor as marketed drugs. Some inhibitors are to date in early phase clinical development.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
Doublecortin-like kinase 1 (DCLK1) has been revealed to be involved in modulating cancer stemness and tumor progression, but its role in prostate cancer (PCa) remains obscure. Castration-resistant and metastatic PCa exhibit aggressive behaviors, and current therapeutic approaches have shown limited beneficial effects on the overall survival rate of patients with advanced PCa. This study aimed to investigate the biological role and potential molecular mechanism of DCLK1 in the progression of PCa.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
Clear cell renal cell carcinoma (ccRCC) is one of the most common and aggressive malignancies of the urinary system. Despite being the first-line treatment for advanced ccRCC, vascular endothelial growth factor receptor inhibitors (VEGFRis) face significant limitations due to both initial and acquired resistance, which impede complete tumor eradication. Using a CRISPR/Cas9 library screening approach, was identified as a resistance-associated gene for three prevalent VEGFRis (Sunitinib, Axitinib, and Sorafenib).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!