The spine apparatus is a specialized compartment of the neuronal smooth endoplasmic reticulum (ER) located in a subset of dendritic spines. It consists of stacks of ER cisterns that are interconnected by an unknown dense matrix and are continuous with each other and with the ER of the dendritic shaft. While this organelle was first observed over 60 y ago, its molecular organization remains a mystery. Here, we performed in vivo proximity proteomics to gain some insight into its molecular components. To do so, we used the only known spine apparatus-specific protein, synaptopodin, to target a biotinylating enzyme to this organelle. We validated the specific localization in dendritic spines of a small subset of proteins identified by this approach, and we further showed their colocalization with synaptopodin when expressed in nonneuronal cells. One such protein is Pdlim7, an actin binding protein not previously identified in spines. Pdlim7, which we found to interact with synaptopodin through multiple domains, also colocalizes with synaptopodin on the cisternal organelle, a peculiar stack of ER cisterns resembling the spine apparatus and found at axon initial segments of a subset of neurons. Moreover, Pdlim7 has an expression pattern similar to that of synaptopodin in the brain, highlighting a functional partnership between the two proteins. The components of the spine apparatus identified in this work will help elucidate mechanisms in the biogenesis and maintenance of this enigmatic structure with implications for the function of dendritic spines in physiology and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586327PMC
http://dx.doi.org/10.1073/pnas.2203750119DOI Listing

Publication Analysis

Top Keywords

spine apparatus
16
dendritic spines
16
proximity proteomics
8
insight molecular
8
components spine
8
synaptopodin
6
spine
5
dendritic
5
spines
5
proteomics synaptopodin
4

Similar Publications

Background: Prone lateral spinal surgery for simultaneous lateral and posterior approaches has recently been proposed to facilitate surgical room efficiency. The purpose of this study is to evaluate the feasibility and outcomes of minimally invasive prone lateral spinal surgery using a rotatable radiolucent Jackson table.

Methods: From July 2021 to June 2023, a consecutive series of patients who received minimally invasive prone lateral spinal surgery for various etiologies by the same surgical team were reviewed.

View Article and Find Full Text PDF

Background: Robotic-assisted spinal surgery has reportedly improved the accuracy of instrumentation with smaller incisions, improving surgical outcomes and reducing hospital stay. However, robot-assisted spine surgery has thus far been confined to placement of pedicle screw instrumentation only. This pilot study aims to explore the feasibility of utilizing the Mazor™ X Stealth Edition (Medtronic, Sofamor Danek USA), robotic-arm platform in the minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) procedure inclusive of interbody cage placement, in our institution.

View Article and Find Full Text PDF

Anterior lumbar interbody fusion (ALIF) is an anterior surgical approach for interbody fusion in the lumbar spine which affords the surgeon unfettered access to the disc space and allows for release of the anterior longitudinal ligament and insertion of a large, lordotic interbody graft. Despite the benefits associated with ALIF when compared with other lumbar interbody fusion techniques, the ALIF approach is associated with a number of unique complications, and certain patient-specific criteria (e.g.

View Article and Find Full Text PDF

Background: Implant fixation is often the cornerstone of musculoskeletal surgical procedures performed to provide bony fixation and/or fusion. The aim of this study was to evaluate how different design features and manufacturing methods influence implant osseointegration and mechanical properties associated with fixation in a standardized model in cancellous bone of adult sheep.

Methods: We evaluated the performance of three titanium alloy implants: (A) iFuse-TORQ implant; (B) Fenestrated Sacroiliac Device; and (C) Standard Cancellous Bone Screw in the cancellous bone of the distal femur and proximal tibia in 8 sheep.

View Article and Find Full Text PDF

Atlantoaxial rotatory subluxation (AARS) in the adult population is primarily trauma-induced. Conservative and surgical treatments have both been used successfully in treating AARS. In cases where AARS cannot be reduced by conservative measures, open reduction and fusion is the conventional treatment approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!