With the vigorous development of vision techniques, simultaneous localization and mapping (SLAM) has shown the capability of navigating autonomous robots in global-navigation-satellite-system-denied environments. However, the long-term robust navigation of lightweight autonomous robots in outdoor environments with complex interferences, such as illumination change, dynamic objects, and electromagnetic interference, is still a great challenge. In this paper, a polarization sensor-aided SLAM (POL-SLAM) that can provide absolute heading constraints for pure SLAM is proposed. POL-SLAM is a lightweight, tightly coupled system consisting of a polarization sensor and binocular camera. By means of an initialization that uses a polarization sensor, an absolute heading angle for the entire map is designed. Additionally, an algorithm to eliminate mismatching points using the matching point vector is proposed. The objective function of bundle adjustment is then deduced according to the re-projection error and polarization sensor. The vehicle test shows that the yaw and trajectory accuracies of POL-SLAM are significantly improved compared to pure SLAM. The yaw and trajectory accuracies are increased by 43.1% and 36.6%, respectively. These results indicate that the proposed POL-SLAM can improve the reliability and robustness of pure SLAM and can be used in lightweight autonomous robots in outdoor environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.453318 | DOI Listing |
Sci Rep
January 2025
School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, JL431, China.
Multimodal sentiment analysis (MSA) aims to use a variety of sensors to obtain and process information to predict the intensity and polarity of human emotions. The main challenges faced by current multi-modal sentiment analysis include: how the model extracts emotional information in a single modality and realizes the complementary transmission of multimodal information; how to output relatively stable predictions even when the sentiment embodied in a single modality is inconsistent with the multi-modal label; how can the model ensure high accuracy when a single modal information is incomplete or the feature extraction performance not good. Traditional methods do not take into account the interaction of unimodal contextual information and multi-modal information.
View Article and Find Full Text PDFMater Horiz
January 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors.
View Article and Find Full Text PDFTopological interface states (TISs), known for their distinctive capabilities in manipulating electromagnetic waves, have attracted significant interest. However, in conventional all-dielectric one-dimensional photonic crystal (1DPC) heterostructures, TISs strongly depend on incident angle, which limits their practical applications. Here, we realize an angle-independent TIS in 1DPC heterostructures containing hyperbolic metamaterials (HMMs) for transverse magnetic polarized waves.
View Article and Find Full Text PDFACS Nano
January 2025
IBM Almaden Research Center, San Jose 95120-6099, California, United States.
Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62512, Egypt.
This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!