Wavelength-dependent absorption and scattering properties determine the fluorescence photon transport in biological tissues and image resolution of optical molecular tomography. Currently, these parameters are computed from optically measured data. For small animal imaging, estimation of optical parameters is a large-scale optimization problem, which is highly ill-posed. In this paper, we propose a new, to the best of our knowledge, approach to estimate optical parameters of biological tissues with photon-counting micro-computed tomography (micro-CT). From photon-counting x-ray data, multi-energy micro-CT images can be reconstructed to perform multi-organ segmentation and material decomposition in terms of tissue constituents. The concentration and characteristics of major tissue constituents can be utilized to calculate the optical absorption and scattering coefficients of the involved tissues. In our study, we perform numerical simulation, phantom experiments, and in vivo animal studies to calculate the optical parameters using our proposed approach. The results show that our approach can estimate optical parameters of tissues with a relative error of <10, accurately mapping the optical parameter distributions in a small animal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552592PMC
http://dx.doi.org/10.1364/JOSAA.451319DOI Listing

Publication Analysis

Top Keywords

optical parameters
20
biological tissues
12
parameters biological
8
tissues photon-counting
8
absorption scattering
8
approach estimate
8
estimate optical
8
tissue constituents
8
calculate optical
8
parameters
6

Similar Publications

Design optimization of a 1-D array of stemless plastic scintillation detectors.

Med Phys

January 2025

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.

Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.

View Article and Find Full Text PDF

The effect of optical stimulation at a frequency of 10 Hz (OS) on temporal parameters of sensorimotor activity in healthy subjects (n=32) was studied. The expression of the activation response was determined by the ratio of spectral power values (SPα2, μV) of the high frequency (10-13 Hz) subrange of the α-rhythm of the initial EEG with closed and opened eyes and the frequency of the maximum α-peak (IAPF). A test for simple motor reaction time was performed under normal and OS conditions.

View Article and Find Full Text PDF

Panoramic Nailfold Flow Velocity Measurement Method Based on Enhanced Plasma Gap Information.

J Imaging Inform Med

January 2025

State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.

Nailfold microcirculation examination is crucial for the early differential diagnosis of diseases and indicating their severity. In particular, panoramic nailfold flow velocity measurements can provide direct quantitative indicators for the study of vascular diseases and technical support to assess vascular health. Previously, nailfold imaging equipment was limited by a small field of view.

View Article and Find Full Text PDF

An effective vessel segmentation method using SLOA-HGC.

Sci Rep

January 2025

Faculty of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.

Accurate segmentation of retinal blood vessels from retinal images is crucial for detecting and diagnosing a wide range of ophthalmic diseases. Our retinal blood vessel segmentation algorithm enhances microfine vessel extraction, improves edge texture clarity, and normalizes vessel distribution. It stabilizes neural network training for complex retinal vascular features.

View Article and Find Full Text PDF

Photoswitches are widely investigated molecules because upon exposure to selected light irradiation, they are able to undergo structural, and hence optical, changes. To fully exploit their responsiveness to irradiation, the quantum efficiency of the forward and back reactions is a fundamental parameter, whose accurate determination is critical. In this work, the spectral evolution of a biomimetic switch, which undergoes / photoinduced isomerization, is spectrophotometrically examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!