We propose Recognition as Part Composition (RPC), an image encoding approach inspired by human cognition. It is based on the cognitive theory that humans recognize complex objects by components, and that they build a small compact vocabulary of concepts to represent each instance with. RPC encodes images by first decomposing them into salient parts, and then encoding each part as a mixture of a small number of prototypes, each representing a certain concept. We find that this type of learning inspired by human cognition can overcome hurdles faced by deep convolutional networks in low-shot generalization tasks, like zero-shot learning, few-shot learning and unsupervised domain adaptation. Furthermore, we find a classifier using an RPC image encoder is fairly robust to adversarial attacks, that deep neural networks are known to be prone to. Given that our image encoding principle is based on human cognition, one would expect the encodings to be interpretable by humans, which we find to be the case via crowd-sourcing experiments. Finally, we propose an application of these interpretable encodings in the form of generating synthetic attribute annotations for evaluating zero-shot learning methods on new datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2022.3212633DOI Listing

Publication Analysis

Top Keywords

human cognition
12
rpc image
8
image encoding
8
inspired human
8
zero-shot learning
8
interpretable compositional
4
compositional representations
4
representations robust
4
robust few-shot
4
few-shot generalization
4

Similar Publications

Background: A mobile cognition scale for community screening in cognitive impairment with rigorous validation is in paucity. We aimed to develop a digital scale that overcame low education for community screening for mild cognitive impairment (MCI) due to Alzheimer's disease (AD) and AD.

Methods: A mobile cognitive self-assessment scale (CogSAS) was designed through the Delphi process, which is feasible for the older population with low education.

View Article and Find Full Text PDF

Depression symptom severity and behavioral impairment in school-going adolescents in Uganda.

BMC Psychiatry

January 2025

Division of Epidemiology and Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.

Background: During adolescence, a critical developmental phase, cognitive, psychological, and social states interact with the environment to influence behaviors like decision-making and social interactions. Depressive symptoms are more prevalent in adolescents than in other age groups which may affect socio-emotional and behavioral development including academic achievement. Here, we determined the association between depression symptom severity and behavioral impairment among adolescents enrolled in secondary schools of Eastern and Central Uganda.

View Article and Find Full Text PDF

Introduction: Intrinsic Capacity in integrated geriatric care emphasizes the importance of a thorough functional assessment. Monitoring the intrinsic capacity of older individuals provides standardized and reliable information to prevent early disability. This study assessed the relationship between intrinsic capacity and functional ability in older adults.

View Article and Find Full Text PDF

Estimating self-performance when making complex decisions.

Sci Rep

January 2025

Centre for Brain, Mind and Markets, Faculty of Business and Economics, The University of Melbourne, Melbourne, Australia.

Metacognition, the ability to monitor and reflect on our own mental states, enables us to assess our performance at different levels - from confidence in individual decisions to overall self-performance estimates (SPEs). It plays a particularly important part in computationally complex decisions that require a high level of cognitive resources, as the allocation of such limited resources presumably is based on metacognitive evaluations. However, little is known about metacognition in complex decisions, in particular, how people construct SPEs.

View Article and Find Full Text PDF

This global study analyzed data from the largest dataset ever studied in the Heart Rate Variability (HRV) biofeedback field, comprising 1.8 million user sessions collected from users of a mobile app during 2019 and 2020. We focused on HRV Coherence, which is linked to improved emotional stability and cognitive function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!