Model-driven methods and data-driven methods have been widely developed for hyperspectral image (HSI) denoising. However, there are pros and cons in both model-driven and data-driven methods. To address this issue, we develop a self-supervised HSI denoising method via integrating model-driven with data-driven strategy. The proposed framework simultaneously cooperates the spectral low-rankness prior and deep spatial prior (SLRP-DSP) for HSI self-supervised denoising. SLRP-DSP introduces the Tucker factorization via orthogonal basis and reduced factor, to capture the global spectral low-rankness prior in HSI. Besides, SLRP-DSP adopts a self-supervised way to learn the deep spatial prior. The proposed method doesn't need a large number of clean HSIs as the label samples. Through the self-supervised learning, SLRP-DSP can adaptively adjust the deep spatial prior from self-spatial information for reduced spatial factor denoising. An alternating iterative optimization framework is developed to exploit the internal low-rankness prior of third-order tensors and the spatial feature extraction capacity of convolutional neural network. Compared with both existing model-driven methods and data-driven methods, experimental results manifest that the proposed SLRP-DSP outperforms on mixed noise removal in different noisy HSIs.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2022.3211471DOI Listing

Publication Analysis

Top Keywords

low-rankness prior
16
deep spatial
16
spatial prior
16
spectral low-rankness
12
data-driven methods
12
prior
8
prior deep
8
prior hsi
8
model-driven methods
8
methods data-driven
8

Similar Publications

. Low-dose computed tomography (LDCT) is an imaging technique that can effectively help patients reduce radiation dose, which has attracted increasing interest from researchers in the field of medical imaging. Nevertheless, LDCT imaging is often affected by a large amount of noise, making it difficult to clearly display subtle abnormalities or lesions.

View Article and Find Full Text PDF

Photon-counting computed tomography (PCCT) may dramatically benefit clinical practice due to its versatility such as dose reduction and material characterization. However, the limited number of photons detected in each individual energy bin can induce severe noise contamination in the reconstructed image. Fortunately, the notable low-rank prior inherent in the PCCT image can guide the reconstruction to a denoised outcome.

View Article and Find Full Text PDF

Objective: Multi-shot interleaved echo planer imaging (Ms-iEPI) can obtain diffusion-weighted images (DWI) with high spatial resolution and low distortion, but suffers from ghost artifacts introduced by phase variations between shots. In this work, we aim at solving the ms-iEPI DWI reconstructions under inter-shot motions and ultra-high b-values.

Methods: An iteratively joint estimation model with paired phase and magnitude priors is proposed to regularize the reconstruction (PAIR).

View Article and Find Full Text PDF

Fusion with corresponding finer-resolution images has been a promising way to enhance hyperspectral images (HSIs) spatially. Recently, low-rank tensor-based methods have shown advantages compared with other kind of ones. However, these current methods either relent to blind manual selection of latent tensor rank, whereas the prior knowledge about tensor rank is surprisingly limited, or resort to regularization to make the role of low rankness without exploration on the underlying low-dimensional factors, both of which are leaving the computational burden of parameter tuning.

View Article and Find Full Text PDF

In this article, we propose a novel bilayer low-rankness measure and two models based on it to recover a low-rank (LR) tensor. The global low rankness of underlying tensor is first encoded by LR matrix factorizations (MFs) to the all-mode matricizations, which can exploit multiorientational spectral low rankness. Presumably, the factor matrices of all-mode decomposition are LR, since local low-rankness property exists in within-mode correlation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!