AI Article Synopsis

  • Rapidly increasing information volume complicates machine learning processes, leading to high costs and poor outcomes due to ineffective feature selection.
  • A new chaotic opposition fruit fly optimization algorithm is introduced to select the best subset of features while maintaining accuracy in high-dimensional datasets.
  • The algorithm demonstrates superior performance over established feature selection methods across various datasets, including one related to coronavirus disease, by enhancing classification accuracy and reducing the number of features used.

Article Abstract

The fast-growing quantity of information hinders the process of machine learning, making it computationally costly and with substandard results. Feature selection is a pre-processing method for obtaining the optimal subset of features in a data set. Optimization algorithms struggle to decrease the dimensionality while retaining accuracy in high-dimensional data set. This article proposes a novel chaotic opposition fruit fly optimization algorithm, an improved variation of the original fruit fly algorithm, advanced and adapted for binary optimization problems. The proposed algorithm is tested on ten unconstrained benchmark functions and evaluated on twenty-one standard datasets taken from the Univesity of California, Irvine repository and Arizona State University. Further, the presented algorithm is assessed on a coronavirus disease dataset, as well. The proposed method is then compared with several well-known feature selection algorithms on the same datasets. The results prove that the presented algorithm predominantly outperform other algorithms in selecting the most relevant features by decreasing the number of utilized features and improving classification accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550095PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275727PLOS

Publication Analysis

Top Keywords

fruit fly
12
feature selection
12
novel chaotic
8
fly optimization
8
optimization algorithm
8
data set
8
presented algorithm
8
algorithm
6
chaotic oppositional
4
oppositional fruit
4

Similar Publications

Interorgan lipid transport is crucial for organism development and the maintenance of physiological function. Here, we demonstrate that long-chain acyl-CoA synthetase (dAcsl), which catalyzes the conversion of fatty acids into acyl-coenzyme As (acyl-CoAs), plays a critical role in regulating systemic lipid homeostasis. dAcsl deficiency in the fat body led to the ectopic accumulation of neutral lipids in the gut, along with significantly reduced lipoprotein contents in both the fat body and hemolymph.

View Article and Find Full Text PDF

Natural flavonoid glycosides Chrysosplenosides I & A rejuvenate intestinal stem cell aging via activation of PPARγ signaling.

Life Med

June 2024

Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.

The decline in intestinal stem cell (ISC) function is a hallmark of aging, contributing to compromised intestinal regeneration and increased incidence of age-associated diseases. Novel therapeutic agents that can rejuvenate aged ISCs are of paramount importance for extending healthspan. Here, we report on the discovery of Chrysosplenosides I and A (CAs 1 & 2), flavonol glycosides from the Xizang medicinal plant Maxim.

View Article and Find Full Text PDF

Sour rot (SR) is a late-season non-Botrytis rot affecting grapevines, resulting from a complex interplay of microorganisms, including non-Saccharomyces yeasts and acetic acid bacteria. Nonmicrobial factors contributing to disease development encompass vectors (e.g.

View Article and Find Full Text PDF

Molecular and functional characterization of a β-tubulin gene in Plutella xylostella.

Int J Biol Macromol

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China. Electronic address:

The β-tubulin gene is essential for reproductive development, especially for male fertility, in different insects including Bombyx mori and Drosophila melanogaster. Targeting reproductive genes such as β-tubulin offers a promising approach to pest control that is more sustainable than chemical pesticides. However, there is limited research on the functional role of β-tubulin in Plutella xylostella, a highly damaging pest of vegetable crops.

View Article and Find Full Text PDF

The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!