Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Over the last few decades, there has been a progressive transition from a categorical to a dimensional approach to psychiatric disorders. Especially in the case of substance use disorders, interest in the individual vulnerability to transition from controlled to compulsive drug taking warrants the development of novel dimension-based objective stratification tools. Here we drew on a multidimensional preclinical model of addiction, namely the 3-criteria model, previously developed to identify the neurobehavioural basis of the individual's vulnerability to switch from controlled to compulsive drug taking, to test a machine-learning assisted classifier objectively to identify individual subjects as vulnerable/resistant to addiction. Datasets from our previous studies on addiction-like behaviour for cocaine or alcohol were fed into a variety of machine-learning algorithms to develop a classifier that identifies resilient and vulnerable rats with high precision and reproducibility irrespective of the cohort to which they belong. A classifier based on K-median or K-mean-clustering (for cocaine or alcohol, respectively) followed by artificial neural networks emerged as a highly reliable and accurate tool to predict if a single rat is vulnerable/resilient to addiction. Thus, each rat previously characterized as displaying 0-criterion (i.e., resilient) or 3-criteria (i.e., vulnerable) in individual cohorts was correctly labelled by this classifier. The present machine-learning-based classifier objectively labels single individuals as resilient or vulnerable to developing addiction-like behaviour in a multisymptomatic preclinical model of addiction-like behaviour in rats. This novel dimension-based classifier increases the heuristic value of these preclinical models while providing proof of principle to deploy similar tools for the future of diagnosis of psychiatric disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092243 | PMC |
http://dx.doi.org/10.1111/ejn.15839 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!