L-Cys-Assisted Conversion of H/CO to Biochemicals Using Clostridium ljungdahlii.

Appl Biochem Biotechnol

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.

Published: February 2023

Carbon fixation and conversion based on Clostridium ljungdahlii have great potential for the sustainable production of biochemicals (i.e., 2,3-butanediol, acetic acid, and ethanol). Here, the effects of reducing agents on the production of biochemicals from H/CO using C. ljungdahlii were studied. It was found that the element S and reducing power could significantly affect the production of biochemicals, and cysteine (Cys) was better than sodium sulfide for the production of biochemicals, especially for the production of 2,3-butanediol. Moreover, comparing to the control (i.e., without the addition of Cys), the gene expression profiles indicated that the fdh and adhE1 were significantly upregulated with the addition of Cys, which involved in pathways of the CO fixation and ethanol production. Therefore, the irreplaceability of Cys on the production of biochemicals was both caused by its utilization as a reducing agent and its effect on the metabolic pathway. Finally, compared to the control, the production of 2,3-butanediol was increased by 2.17 times under the addition of 1.7 g/L Cys.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-022-04174-2DOI Listing

Publication Analysis

Top Keywords

production biochemicals
20
clostridium ljungdahlii
8
production
8
production 23-butanediol
8
addition cys
8
biochemicals
6
cys
5
l-cys-assisted conversion
4
conversion h/co
4
h/co biochemicals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!