Purpose: KLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20.

Methods: Patients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed.

Results: We studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type β-propeller domain of the KLHL20 protein, which shapes the substrate binding surface.

Conclusion: Our findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gim.2022.08.020DOI Listing

Publication Analysis

Top Keywords

novo missense
20
missense variants
20
intellectual disability
12
epilepsy autism
12
autism spectrum
12
spectrum disorder
12
ubiquitin ligase
8
klhl20
8
neurodevelopmental disorder
8
patients novo
8

Similar Publications

AMPylation is a post-translational modification involving the transfer of adenosine monophosphate (AMP) from adenosine triphosphate (ATP) to target proteins, serving as a critical regulatory mechanism in cellular functions. This study aimed to expand the phenotypic spectrum associated with mutations in the FICD gene, which encodes an adenyltransferase enzyme involved in both AMPylation and deAMPylation. A clinical evaluation was conducted on a patient presenting with a complex clinical profile.

View Article and Find Full Text PDF

UBA1 is an E1 ubiquitin-activating enzyme that initiates the ubiquitylation of target proteins and is thus a key component of the ubiquitin signaling pathway. Three disorders are associated with pathogenic variants of the UBA1 gene: vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome, lung cancer in never smokers (LCINS), and X-linked spinal muscular atrophy (XL-SMA, SMAX2). We here report a case of infantile respiratory distress syndrome followed by continuing neuromuscular symptoms.

View Article and Find Full Text PDF

Rubinstein-Taybi syndrome (RSTS) is an autosomal dominant genetic disease characterized by growth retardation, psychomotor retardation, and distinctive facial features. It is primarily caused by mutations in CREBBP or EP300. In this study, we aimed to describe the clinical manifestations and genetic analyses of two cases with RSTS.

View Article and Find Full Text PDF

RICTOR variants are associated with neurodevelopmental disorders.

Eur J Hum Genet

December 2024

Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, 4 rue Kirschleger, 67085, Strasbourg, France.

RICTOR is a key component of the mTORC2 signaling complex which is involved in the regulation of cell growth, proliferation and survival. RICTOR is highly expressed in neurons and is necessary for brain development. Here, we report eight unrelated patients presenting with intellectual disability and/or development delay and carrying variants in the RICTOR gene.

View Article and Find Full Text PDF

Background: Variants in the GABRA2 gene, which encodes the α2 subunit of the γ-aminobutyric acid A receptor, have been linked to a rare form of developmental and epileptic encephalopathy (DEE) referred to as DEE78. Only eight patients have been reported globally. This study presents the clinical presentation and genetic analysis of a Chinese family with a child diagnosed with DEE78, due to a novel GABRA2 variant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!