One of the functions of small extracellular vesicles (sEVs) which has received the most attention is their capacity to deliver RNA into the cytoplasm of target cells. These studies have often been performed by transfecting RNAs into sEV-producing cells, to later purify and study sEV delivery of RNA. Transfection complexes and other delivery vehicles accumulate in late endosomes where sEV are formed and over 50% of transfection complexes or delivery vehicles administered to cells are released again to the extracellular space by exocytosis. This raises the possibility that transfection complexes could alter sEVs and contaminate sEV preparations. We found that widely used transfection reagents including RNAiMax and INTERFERin accumulated in late endosomes. These transfection complexes had a size similar to sEV and were purified by ultracentrifugation like sEV. Focusing on the lipid-based transfection reagent RNAiMax, we found that preparations of sEV from transfected cells contained lipids from transfection complexes and transfected siRNA was predominantly in particles with the density of transfection complexes, rather than sEV. This suggests that transfection complexes, such as lipid-based RNAiMax, may frequently contaminate sEV preparations and could account for some reports of sEV-mediated delivery of nucleic acids. Transfection of cells also impaired the capacity of sEVs to deliver stably-expressed siRNAs, suggesting that transfection of cells may alter sEVs and prevent the study of their endogenous capacity to deliver RNA to target cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9549735 | PMC |
http://dx.doi.org/10.1002/jev2.12220 | DOI Listing |
Cytotechnology
April 2025
Medical Aesthetics Teaching and Research Office, Rehabilitation and Health Department, Anhui College of Traditional Chinese Medicine, No.18 Wuxia mountain West Road, Wuhu, 241002 Anhui China.
Burn injuries are complex, life-threatening events involving intricate cellular and molecular processes, including angiogenesis, which is vital for effective wound healing. polysaccharide (BSP), a bioactive compound from , exhibits anti-inflammatory and wound-healing properties. However, its impact on angiogenesis modulation, particularly through the synaptopodin-2-like (SCEL) gene, remains poorly understood.
View Article and Find Full Text PDFChin Med J (Engl)
January 2025
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China.
Background: Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.
Methods: Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts.
Viruses
January 2025
State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
The dengue virus (DENV) is primarily transmitted by . Investigating genes associated with mosquito susceptibility to DENV2 offers a theoretical foundation for targeted interventions to regulate or block viral replication and transmission within mosquitoes. Based on the transcriptomic analyses of the midgut and salivary glands from infected with DENV2, alongside analyses of Aag2 cell infections, 24 genes potentially related to the regulation of infection with DENV2 were selected.
View Article and Find Full Text PDFPharmaceutics
January 2025
School of Pharmacy, Changzhou University, Changzhou 213164, China.
Non-viral vectors have gained recognition for their ability to enhance the safety of gene delivery processes. Among these, polyethyleneimine (PEI) stands out as the most widely utilized cationic polymer due to its accessibility. Traditional methods of modifying PEI, such as ligand conjugation, chemical derivatization, and cross-linking, are associated with intricate preparation procedures, limited transfection efficiency, and suboptimal biocompatibility.
View Article and Find Full Text PDFPharmaceutics
January 2025
Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host-guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!