AI Article Synopsis

  • Recent methodological advancements have broadened the scope of calculating the rovibrational states of noncovalently bound molecular complexes, enabling detailed quantum calculations.
  • These methods leverage the weak coupling between inter- and intramolecular degrees of freedom, allowing efficient computation of high-energy eigenstates using specialized eigenstate bases.
  • The review highlights significant progress in calculating intramolecular fundamentals and low-lying intermolecular states, showcasing applications through comparisons with experimental spectroscopic data.

Article Abstract

The methodological advances made in recent years have significantly extended the range and dimensionality of noncovalently bound, hydrogen-bonded and van der Waals, molecular complexes for which full-dimensional and fully coupled quantum calculations of their rovibrational states are feasible. They exploit the unexpected implication that the weak coupling between the inter- and intramolecular rovibrational degrees of freedom (DOFs) of the complexes has for the ease of computing the high-energy eigenstates of the latter. This is done very effectively by using contracted eigenstate bases to cover both intra- and intermolecular DOFs. As a result, it is now possible to calculate rigorously all intramolecular rovibrational fundamentals, together with the low-lying intermolecular rovibrational states, of complexes involving two small molecules beyond diatomics, binary polyatomic molecule-large (rigid) molecule complexes, and endohedral complexes of light polyatomic molecules confined inside (rigid) fullerene cages. In this Perspective these advances are reviewed in considerable depth. The progress made thanks to them is illustrated by a number of representative applications. Whenever possible, direct comparison is made with the available infrared, far-infrared, and microwave spectroscopic data.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp04005kDOI Listing

Publication Analysis

Top Keywords

rovibrational states
12
noncovalently bound
8
molecular complexes
8
full-dimensional fully
8
fully coupled
8
coupled quantum
8
quantum calculations
8
calculations rovibrational
8
intramolecular rovibrational
8
complexes
6

Similar Publications

We present an algorithm that combines quantum scattering calculations with probabilistic machine-learning models to predict quantum dynamics rate coefficients for a large number of state-to-state transitions in molecule-molecule collisions much faster than with direct solutions of the Schrödinger equation. By utilizing the predictive power of Gaussian process regression with kernels, optimized to make accurate predictions outside of the input parameter space, the present strategy reduces the computational cost by about 75%, with an accuracy within 5%. Our method uses temperature dependences of rate coefficients for transitions from the isolated states of initial rotational angular momentum j, determined via explicit calculations, to predict the temperature dependences of rate coefficients for other values of j.

View Article and Find Full Text PDF

Rotational Excitation Cross Sections for Chloronium Based on a New 5D Interaction Potential with Molecular Hydrogen.

J Phys Chem A

January 2025

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)─UMR 6251, F-35000 Rennes, France.

Chloronium (HCl) is an important intermediate of Cl-chemistry in space. The accurate knowledge of its collisional properties allows a better interpretation of the corresponding observations in interstellar clouds and, therefore, a better estimation of its abundance in these environments. While the ro-vibrational spectroscopy of HCl is well-known, the studies of its collisional excitation are rather limited and these are available for the interaction with helium atoms only.

View Article and Find Full Text PDF

Unveiling the Dissociation Mechanism of Diglycine Perchlorate.

Inorg Chem

January 2025

High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, Trombay 400085, India.

Determining the dissociation mechanism of perchlorate materials remains a top priority to address sustainability, handling, processing, and synthesis issues of new and existing high-energy density materials vital to many industrial processes. We determined the dissociation mechanism of diglycine perchlorate (DGPCl) using vibrational spectroscopy, which unveiled the formation of ammonium perchlorate (AP) and carbon at high temperatures. Our studies establish that DGPCl shows multiple phase transitions upon heating.

View Article and Find Full Text PDF
Article Synopsis
  • Many experimental setups in quantum science rely on laser fields for controlling states, but this control can suffer from issues related to optical phase noise.
  • Researchers introduced an optical feedforward technique to minimize laser phase noise during the stimulated Raman adiabatic passage for transferring ultracold RbCs molecules.
  • After conducting over 100 transfers on individual molecules, they achieved a notable transfer efficiency of 98.7(1)%, which is primarily constrained by the intensity of the lasers used.
View Article and Find Full Text PDF

Accurate Rayleigh and Raman scattering cross sections, tensor components, depolarization ratios, and reversal coefficients for all rovibrational transitions within the X1Σg+ ground electronic state of H2 have been calculated. Raman spectra have been generated using these data. A method for calculating Raman scattering cross sections is formulated that is valid below the ionization threshold and in the region containing resonances, which explicitly accounts for all bound and dissociative vibrational levels of the bound intermediate electronic states and approximately accounts for the ionization continuum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!