Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electroencephalography (EEG) is crucial for epilepsy detection; however, detecting abnormalities takes experience and knowledge. The electroencephalogram (EEG) is a technology that measures brain motion and represents the brain's function. EEG is an effective instrument for deciphering the brain's complicated activity. The information contained in the EEG signal pertains to the electric functioning of the brain. Neurologists have typically used direct visual inspection to detect epileptogenic abnormalities. This method is time-consuming, restricted by technical artifacts, produces varying findings depending on the reader's level of experience, and is ineffective at detecting irregularities. As a result, developing automated algorithms for detecting anomalies in EEGs associated with epilepsy is critical. The construction of a novel class of convolutional neural networks (CNNs) for detecting aberrant waveforms and sensors in epilepsy EEGs is described in this research. In this study, EEG signals are analyzed using a convolutional neural network (CNN). For the automatic detection of abnormal and normal EEG indications, a novel deep one-dimensional convolutional neural network (1D CNN) model is suggested in this paper. The regular, pre-ictal, and seizure categories are detected using this approach. The proposed model achieves an accuracy of 85.48% and a reduced categorization error rate of 14.5%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519296 | PMC |
http://dx.doi.org/10.1155/2022/1502934 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!